首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Xi R  Xie T 《Science (New York, N.Y.)》2005,310(5753):1487-1489
The self-renewing ability of a stem cell is controlled by its specialized micro-environment or niche, whereas epigenetic regulation of gene expression by chromatin remodeling factors underlies cell fate determination. Here we report that the adenosine triphosphate-dependent chromatin remodeling factors ISWI and DOM control germline stem cell and somatic stem cell self-renewal in the Drosophila ovary, respectively. The iswi mutant germline stem cells are lost rapidly because of defects in responding to bone morphogenetic protein niche signals and in repressing differentiation, whereas the dom mutant somatic stem cells are lost because of defective self-renewal. This work demonstrates that different stem cell types can use different chromatin remodeling factors to control cell self-renewal.  相似文献   

6.
7.
Secondary structure of histones and DNA in chromatin   总被引:15,自引:0,他引:15  
Laser Raman spectroscopy indicates that the inner histones which are bound to DNA in chromatin or in isolated nu bodies are similar in conformation to the inner histones which are dissociated from DNA in high-salt solutions. This structure contains, on the average, 51+/-5% alpha-helix and no substantial beta-sheet conformation. It is proposed that the protein core of the nu body has a high alpha-helix content.  相似文献   

8.
Sequence-specific packaging of DNA in human sperm chromatin   总被引:20,自引:0,他引:20  
The DNA in human sperm chromatin is packaged into nucleoprotamine (approximately 85%) and nucleohistone (approximately 15%). Whether these two chromatin fractions are sequence-specific subsets of the spermatozoon genome is the question addressed in this report. Sequence-specific packaging would suggest distinct structural and functional roles for the nucleohistone and nucleoprotamine in late spermatogenesis or early development or both. After removal of histones with 0.65M NaCl, exposed DNA was cleaved with Bam HI restriction endonuclease and separated by centrifugation from insoluble nucleoprotamine. The DNA sequence distribution of nucleohistone DNA in the supernatant and nucleoprotamine DNA in the pellet was compared by cloning size-selected single-copy sequences and by using the derived clones as probes of nucleohistone DNA and nucleoprotamine DNA. Two clones derived from nucleohistone DNA preferentially hybridized to nucleohistone DNA, and two clones derived from nucleoprotamine DNA preferentially hybridized to nucleoprotamine DNA, which demonstrated the existence of sequence-specific nucleohistone and nucleoprotamine components within the human spermatozoon.  相似文献   

9.
10.
《Science (New York, N.Y.)》2008,319(5871):1781
A video introduction focusing on RNA's role in gene regulation and the evolution of life.  相似文献   

11.
The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.  相似文献   

12.
Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a major source of this variability, and its physiological consequences have been topics of intense research for the last decade. Several recent studies have measured variability in protein and messenger RNA levels, and they have discovered strong connections between noise and gene regulation mechanisms. When integrated with discrete stochastic models, measurements of cell-to-cell variability provide a sensitive "fingerprint" with which to explore fundamental questions of gene regulation. In this review, we highlight several studies that used gene expression variability to develop a quantitative understanding of the mechanisms and dynamics of gene regulation.  相似文献   

13.
14.
15.
Autogenous regulation of gene expression   总被引:38,自引:0,他引:38  
A new term, autogenous regulation, is used to describe a phenomenon that is not a new discovery but rather is newly appreciated as a mechanism common to a number of systems in both prokaryotic and eukaryotic organisms. In this mechanism the product of a structural gene regulates expression of the operon in which that structural gene resides. In many (perhaps all) cases, the regulatory gene product has several functions, since it may act not only as a regulatory protein but also as an enzyme, structural protein, or antibody, for example. In a few cases, this protein is the multimeric allosteric enzyme that catalyzes the first step of a metabolic pathway, gearing together the two most important mechanisms for controlling the biosynthesis of metabolites in bacterial cells-feedback inhibition and repression. Autogenous regulation may provide a mechanism for amplification of gene expression (84); for severe and prolonged inactivation of gene expression (85); for buffering the response of structural genes to changes in the environment (45, 52); and for maintaining a constant intracellular concentration of a protein, independent of cell size or growth rate (86). Thus, autogenous regulation provides the cell with means for accomplishing a number of different regulatory tasks, each suited to better satisfying the needs of the organism for its survival.  相似文献   

16.
17.
As a way of studying nucleosome assembly and maintenance in Saccharomyces cerevisiae, mutants bearing deletions or duplications of the genes encoding histones H2A and H2B were analyzed. Previous genetic analysis had shown that only one of these mutants exhibited dramatic and pleiotropic phenotypes. This mutant was also the only one that contained disrupted chromatin, suggesting that the original phenotypes were attributable to alterations in chromosome structure. The chromatin disruption in the mutant, however, did not extend over the entire genome, but rather was localized to specific regions. Thus, while the arrangement of nucleosomes over the HIS4 and GAL1 genes, the telomeres, and the long terminal repeats (delta sequences) of Ty retrotransposons appeared essentially normal, nucleosomes over the CYH2 and UBI4 genes and the centromere of chromosome III were dramatically disrupted. The observation that the mutant exhibited localized chromatin disruptions implies that the assembly or maintenance of nucleosomes differs over different parts of the yeast genome.  相似文献   

18.
19.
Nonhistone chromosomal proteins and gene regulation   总被引:33,自引:0,他引:33  
  相似文献   

20.
cis-trans models for post-transcriptional gene regulation   总被引:43,自引:0,他引:43  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号