首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EMS诱导籼稻品种IR64获得淡绿叶突变体HM133。与野生型IR64相比,HM133播种后的第6周和第15周的光合色素含量以及抽穗期的净光合速率显著降低,气孔导度则明显上升;此外,突变体株高、每穗实粒数和结实率等农艺性状也较野生型显著下降。叶绿体超微结构分析表明,分蘖期HM133类囊体基粒片层形状不规则,堆叠凌乱、排列疏松。遗传分析表明HM133淡绿叶性状受单隐性核基因控制。通过分子标记将该基因定位于第3染色体长臂RM143和RM3684之间。该区间内包含编码镁螯合酶D亚基的基因OsCHLD。序列分析表明HM133中该基因第10外显子上有一个从G突变为A的单碱基变异,导致编码的氨基酸由精氨酸变成谷氨酸,推测OsCHLD基因即为控制HM133淡绿叶表型的候选基因。  相似文献   

2.
A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp. japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2 gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp. indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.  相似文献   

3.
水稻着丝粒附近一个淡绿叶突变相关基因的定位分析   总被引:6,自引:0,他引:6  
在T DNA插入水稻突变体库中,发现了一个以日本晴为遗传背景的温度钝感型淡绿叶突变体pgl2(pale green leaf 2 )。遗传学分析表明该突变性状由1对单隐性核基因控制。利用突变体与籼稻品种龙特甫杂交,构建F2群体对突变基因进行精细定位。初步定位结果显示目的基因与第8染色体上SSR标记RM331连锁,在该标记附近发展了14对INDEL标记,将突变基因进一步定位于着丝粒上2.37 Mb的区间,并对该区间候选基因进行了分析。突变体叶绿素的总量与对照相仿,但是叶绿素a/b比值趋于1,明显低于对照。推测突变基因可能与叶绿素a、b间的转化有关。还就着丝粒中基因定位的引物设计方法进行了讨论。  相似文献   

4.
【目的】叶片是水稻进行光合作用的主要场所,叶片颜色的变化与水稻的生长发育直接相关。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。【方法】利用EMS诱变日本晴获得一个能稳定遗传的淡绿叶突变体,暂命名为pgl11(pale green leaf 11)。在不同生育期测定野生型与突变体的叶绿素含量。在苗期,取野生型与突变体叶片进行叶绿体结构的透射电镜观察。在分蘖期,测定野生型与突变体的光合参数并观察气孔结构。在成熟期,测定野生型和pgl11的主要农艺性状。以pgl11为母本,南京6号为父本构建相应的F2群体,采用图位克隆的方法,对该基因进行定位。【结果】从苗期开始,突变体pgl11的每一片新叶均表现为淡绿色,叶绿素含量显著降低,叶绿体发育异常。随着叶片的生长,叶色由淡绿逐渐转绿,至抽穗期时叶绿素含量亦无明显差异。pgl11还表现光合速率、气孔导度明显下降,胞间CO_2浓度上升。扫描电镜观察发现,突变体pgl11的气孔发育异常。与野生型相比,突变体的农艺性状如株高、剑叶宽、二次枝梗数、每穗粒数、粒长、粒宽、千粒重以及结实率等均显著降低。对叶绿素合成、光合作用以及质体发育相关基因的表达量测定表明,突变体pgl11中参与叶绿体转录和翻译相关基因的表达量显著升高,而叶绿素合成和光合作用相关基因的表达量显著下降。遗传分析表明,该突变表型受一对隐性核基因控制。通过图位克隆的方法将该基因定位于第1染色体上的C6和C8标记之间,物理距离约为110 kb。【结论】该定位区间内未见有叶色相关基因报道,推测PGL11基因可能是一个新的水稻叶色基因。  相似文献   

5.
白条纹叶突变体st11是从粳稻品种Kitaake组培过程中获得的。该突变体在分蘖前叶色表现为正常,从分蘖期开始新生叶表现为白条纹直至成熟期。与野生型相比,该突变体的分蘖、株高、结实率和千粒重等农艺性状没有发生明显变化。遗传分析表明该突变体白条纹叶性状受一对隐性核基因控制。利用该突变体分别与水稻02428、Jodan杂交构建了两个F2群体用于基因定位。通过集群分离分析(bulked segregant analysis)发现该基因位于第1染色体端粒附近,并与分子标记RM151和RM10080连锁。进一步利用更多分子标记分析F2群体,我们将该基因定位于I10和I26两个标记之间大约270kb的区间内。  相似文献   

6.
A new white striped leaf mutant wsl1 was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsl1 was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsl1 compared with wild type. Genetic analysis showed that the wsl1 was controlled by a single recessive gene. Molecular mapping of the wsl1 was performed using an F2 population derived from wsl1/Nanjing 11. The wsl1 was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsl1 and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.  相似文献   

7.
水稻淡褐斑叶突变体lbsl1的遗传分析与基因定位   总被引:1,自引:0,他引:1  
 通过EMS诱变籼稻品种IR64获得一个稳定遗传的淡褐色斑点叶突变体lbsl1(light brown spotted leaf 1)。在自然条件下,突变体播种后10~14 d,叶片上出现淡褐色斑点,随后逐渐扩散至全叶,第1叶至剑叶上均有淡褐色斑,为全生育期性状。斑点性状的表达对株高、生育期、结实率和千粒重等农艺性状具有显著的影响。遗传分析结果表明,该淡褐色斑点叶性状受一个隐性核基因控制。将突变体lbsl1与正常叶色水稻Morobereken杂交构建F2定位群体,利用SSR标记,最终将该淡褐叶基因lbsl1(t)定位在第6染色体短臂上一个约130 kb的区段上。定位的结果和发展的群体为该基因的进一步精细定位和克隆奠定了基础。  相似文献   

8.
一个水稻叶片白化转绿叶突变体的遗传分析和精细定位   总被引:5,自引:0,他引:5  
 在水稻品种宜香B中发现了一个白化转绿叶突变体,经过多代自交获得了稳定的白化转绿叶色突变体。该突变体在4叶期前叶色为黄绿色,之后逐渐变绿,从苗龄4周到12周,突变体/野生型叶绿素含量比值从34.5%逐渐升高到99.4%。遗传分析表明该突变受1对隐性核基因控制,暂命名为gra。利用微卫星标记将gra初步定位于第10染色体标记RM596和RM5620之间,进一步利用极端个体定位法把gra精细定位于标记RM25522和RM25535之间。gra基因距RM25522和RM25535标记的遗传距离均为0.05 cM, 其物理距离约为136 kb。  相似文献   

9.
10.
水稻叶穗色泽突变体为解析不同器官叶绿素生物合成之间的内在联系提供了优良的遗传材料。本研究鉴定了1份白叶白穗突变体wlwp7(white leaf and white panicle 7),分析了wlwp7的形态、生理和遗传特点。结果表明:wlwp7对低温敏感,当环境温度为20 ℃时苗期叶片白化,但温度升高至30 ℃后叶色正常;大田环境下wlwp7抽穗后颖壳白化,叶绿素含量降低至野生型的40.73%;除结实率较野生型T98B下降6.28%外,其他产量性状不受影响;遗传分析发现,wlwp7与T98B的正反杂交F2群体中都未出现白叶绿穗和绿叶白穗重组单株,经卡方检测白叶白穗突变单株与绿叶绿穗野生型单株的理论分离比符合1∶3,表明白叶白穗性状受同一隐性核基因控制;利用BSA策略进一步将wlwp7定位在第3染色体上一个280 kb的区域内,该区域未有已报道的白叶白穗基因。本研究发现了wlwp7同时控制叶部和穗部叶绿素合成,精细定位结果为最终克隆wlwp7奠定了基础。  相似文献   

11.
12.
从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期自穗的突变体.该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为自色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄.根据基因定位结果,将该突变体定名为wslwp(white striped leaf and white pa...  相似文献   

13.
在水稻品种南粳41中发现了一个黄绿叶自然突变体,经过多代连续自交形成了稳定的突变系,命名为ygl11(t),ygl11(t)整个生育期叶片都表现为黄绿色。对苗期、分蘖盛期、齐穗期突变体和野生型的叶绿素含量进行测定,ygl11(t)的叶绿素含量是野生型的45.7%~74.7%,叶绿素a含量是野生型的55.2%~87.5%,叶绿素b含量是野生型的12.5%~25.3%,ygl11(t)的类胡萝卜素的含量是野生型的62.3%~97.0%。ygl11(t)在分蘖盛期的净光合速率显著高于野生型,花后10d,ygl11(t)的净光合速率比野生型略低。对突变体叶片中叶绿体的超微结构进行观察,发现突变体叶绿体内的类囊体基粒片层数目减少且严重扭曲变形。遗传分析表明,ygl11(t)叶色性状受1对隐性核基因控制。利用SSR分子标记将YGL11(t)初步定位在水稻第10染色体的长臂上,进一步利用新开发的InDel和CAPS标记将YGL11(t)定位在58.1kb的物理距离内。对该区段内存在的开放阅读框进行序列分析,发现突变体ygl11(t)中编码叶绿素a氧化酶(chlorophyll a oxygenase 1)基因(OsCAO 1)的第9个外显子存在2个碱基缺失,从而导致提前出现终止密码子,初步分析OsCAO1即为YGL11(t)的候选基因。  相似文献   

14.
Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant   总被引:1,自引:0,他引:1  
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.  相似文献   

15.
一个水稻分蘖角度突变体tac2的遗传分析和基因初步定位   总被引:2,自引:0,他引:2  
  水稻散生突变体tac2是以恢复系缙恢10号为材料经甲基磺酸乙酯(EMS)化学诱变所得。该突变体苗期表型正常,分蘖期株型松散,分蘖角度较野生型显著增大,株高明显降低。外源赤霉素处理可以使该突变体株高恢复,但分蘖角度不受影响。遗传分析表明该突变性状受1对隐性主效基因控制。利用分子标记将该基因初步定位于第9染色体上的RM3320与RM201之间,遗传距离分别为19.2和16.7 cM。  相似文献   

16.
17.
Genetic Analysis and Gene Mapping of a Rice Tiller Angle Mutant tac2   总被引:1,自引:0,他引:1  
Tiller angle, a very essential agronomic trait, is significant in rice breeding, especially in plant type breeding. A tiller angle controlling 2 (tac2) mutant was obtained from a restorer line Jinhui 10 by ethyl methane sulphonate mutagenesis. The tac2 mutant displayed normal phenotype at the seedling stage and the tiller angle significantly increased at the tillering stage. A preliminary physiological research indicated that the mutant was sensitive to GA. Thus, it is speculated that TAC2 and TAC1 might control the tiller angle in the same way. Genetic analysis showed that the mutant trait was controlled by a major recessive gene and was located on chromosome 9 using SSR markers. The genetic distances between TAC2 and its nearest markers RM3320 and RM201 were 19.2 cM and 16.7 cM, respectively.  相似文献   

18.
【目的】叶片是水稻理想株型的重要内容,叶片适度卷曲可以提高光合效率。对卷叶相关基因进行遗传分析和初步定位,为下一步的基因克隆与功能分析提供研究基础。【方法】利用EMS诱变雄性不育保持系宜香1B获得一份稳定遗传的叶片向内卷曲突变体,暂命名为rl(t)。在成熟期,测定野生型和rl(t)的主要农艺性状;在分蘖期,取野生型和rl(t)叶片用FAA固定液固定进行石蜡切片,同时,用野生型和rl(t)剑叶测定叶绿素含量;在抽穗期,利用Li-6400便携式光合仪测定10株抽穗期的野生型和rl(t)的光合参数;将rl(t)与野生型及日本晴杂交,观察F_1植株表型,对F_2表型分离进行χ~2测验,对突变体进行遗传分析。以rl(t)/日本晴的F_2群体为材料,利用BSA法进行定位。【结果】与野生型相比,突变体叶片向内卷曲明显,叶片更加直立,叶色变深,其他主要农艺性状均有不同程度降低。光合特性分析表明,突变体比野生型具有更高的光合色素含量,但光合效率没有明显差异。叶片组织切片观察表明,突变体中泡状细胞变小可能是导致叶片卷曲的主要原因。遗传分析表明,该突变体受一对隐性核基因控制,利用突变体与日本晴的F_2群体进行基因定位,最终将该基因定位在第7染色体长臂InDel标记Ind3和Ind4间610 kb的物理区间。【结论】rl(t)叶片内卷是由于近轴面泡状细胞面积减小。RL(t)定位区间内未见卷叶相关基因报道,推测RL(t)可能是一对新基因。  相似文献   

19.
A light brown spotted-leaf mutant of rice was isolated from an ethane methyl sulfonate (EMS)- induced IR64 mutant bank. The mutant, designated as lbsl1 (light brown spotted-leaf 1), displayed light brown spot in the whole growth period from the first leaf to the flag leaf under natural summer field conditions. Agronomic traits including plant height, growth duration, number of filled grains per panicle, seed-setting rate and 1000-grain weight of the mutant were significantly affected. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named lbsl1(t), which was mapped to the short arm of chromosome 6. By developing simple sequence repeat (SSR) markers, the gene was finally delimited to an interval of 130 kb between markers RM586 and RM588. The lbsl1(t) gene is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided will facilitate further fine-mapping and cloning of the gene.  相似文献   

20.
A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B.It showed whole green-yellow plant from the seedling stage,reduced number of tillers and longer growth duration.The contents of chlorophyll,chlorophyll a,chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased,as well as the number of spikelets per panicle,seed setting rate and 1000-grain weight compared with its wild-type parent.Genetic analyses on F1 and F2 generetions of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene.Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys,and the mutant gene of 824ys was mapped on the shon arm of rice chromosome 3.The genetic distances from the target gene to the markers RM218,RM282 and RM6959 were 25.6 cM,5.2 cM and 21.8 cM,respectively.It was considered to be a now chlorophyll-deficit mutant gene and tentatively named as chl11(t).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号