首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wood production varies substantially with resource availability, and the variation in wood production can result from several mechanisms: increased photosynthesis, and changes in partitioning of photosynthesis to wood production, belowground flux, foliage production or respiration. An understanding of the mechanistic basis for patterns in wood production within a stand and across landscapes requires a complete annual carbon budget. We measured annual carbon flows to wood production, foliage production and total belowground carbon flux (the sum of root production, root respiration, and mycorrhizal production and respiration) from ages three to five years in clonal Eucalyptus plantations at four sites in Brazil to test if fertility, water availability and stand structure changed wood production and by what mechanism. We also quantified the patterns in light interception and the efficiency of light use to provide additional mechanistic insights into growth responses and to determine if light-use efficiency was related to changes in flux and partitioning.  相似文献   

2.
《Southern Forests》2013,75(2):91-98
The choice of spacing among trees for operational plantations is typically based on one or more experimental plantations that test for the response of tree and stand growth to a range of tree-to-tree distances. The most common design for spacing experiments entails rectangular plots that test different distances between rows, and between trees within rows, and with replication of plots covering one to several hectares within a single stand. Other designs may offer more information with simpler layouts, and we examined the insights that could be obtained from a Nelder (fan-shape) design, where spacing among trees varies with the radial distance from a central point. The response of Eucalyptus dunnii seed-origin trees to spacing was essentially similar between a classic plot design replicated in four blocks (tree spacing from 4.5 to 9.2 m2 tree?1, covering 1.4 ha of land), and a Nelder design (tree spacing from 2.1 to 44.0 m2 tree?1, covering 0.6 ha of land). The Nelder design showed slightly higher volume increment through 10 years of stand development than the block design (for the range of overlap in spacing), but the treatment effect of spacing was essentially identical between the designs at the level of both trees and stands. A second Nelder experiment used clonal-origin trees from six clones, testing for differences in responses to spacing among clones. In all three spacing experiments and for all clones, individual-tree growth was greatest at the widest spacing and stand-level growth was highest at the tightest spacing. These trends were much clearer across the wider range of spacing tested in the Nelder plots (228 to 4 760 trees ha?1) than in the narrower range of spacing tested in the block design (1 111 to 2 222 trees ha?1). Current annual increment reached a higher, earlier peak at narrow spacing. At 8.5 years, the light use efficiency (stem volume growth per unit of light intercepted) was about twice as great for trees at narrow spacing than at wider spacing. Overall, the Nelder designs provided the same information on responses to spacing as the classic block design. The simplicity and small size of Nelder designs provide valuable insights for basic decisions on spacing for operational plantations, particularly when forestry extends into new geographic areas, new genotypes, and new silvicultural techniques.  相似文献   

3.
A well-recognized phenomenon during forest development is that stand level forest growth rate begins to decrease after canopy closure. Binkley [Binkley, D., 2004. A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology and Management 190, 265–271] proposed an interesting hypothesis relating individual contribution of trees to forest growth patterns, considering changes in dominance levels and resource use efficiency (ReUE, biomass growth per unit of resource used) of dominant vs suppressed trees. He stated that “the decline in standlevel growth near canopy closure is driven by increasing dominance of larger trees, leading to declining efficiency of resource use by smaller trees”. This decrease in ReUE of suppressed trees once canopy closes would lead to a general decline in standlevel ReUE and thus, in stand growth. This author with other colleagues found evidence according to this hypothesis, but much more research is needed to prove its generality in forests of different species and environmental conditions. The goal of this study was to test Binkley's hypothesis using information of growth patterns, water use efficiency (WUE) and growth efficiency (GE) in different stands of Pinus ponderosa in N.W. Patagonia. According to the hypothesis, we found no dominance in open stands, and some degree of dominance in closed canopy stands. However, in contrast to predictions, WUE differed between the smallest and the largest trees of each stand both with and without dominance. No differences in GE were observed between different tree size groups, and considering individual trees, the more suppressed ones were those with the highest GE. Based on our results, we proposed another hypothesis relating individual and stand ReUE: a decrease in ReUE is not determined by the establishment of dominance and subsequent decrease in suppressed trees efficiencies, but by the availability of resources for individual trees. In this regard, we postulate that differences in ReUE between trees of a stand can appear before dominance, and that these differences in ReUE lead to differences in size of the trees and later, in its social position. When trees grow, they have access to more resources, increasing at the same time, their efficiency using the resources. This efficiency is going to decrease when availability of resources decreases (for competition or environmental stress). The stand ReUE will be maintained, decreased or increased based on the balance of available resources for the individual trees, which in turn will depend on their growth rates, competitive ability and environmental site conditions.  相似文献   

4.
The development of forests over time involves changes in rates of growth of trees and stands, and changes in the competition and dominance between trees plays a large role in the overall development of stands. A hypothesis proposes that changes in the growth of trees and stands result from regular changes in dominance and the efficiency of resource use by dominant and non-dominant trees. Dominance is low prior to canopy closure, and efficiency of resource use is high for all trees. Increasing dominance near canopy closure reduces the efficiency of resource use by non-dominant trees, lowering overall stand growth. Later in stand development, the efficiency of resource use also declines for the largest trees, reducing the level of dominance in the stand. The dominance part of this hypothesis was examined for 150 years of stand development in two mixed-species stands in the Coast Range of Oregon. A quantitative index of dominance was minimal prior to the peak in stand growth near age 25–30 years, and then increased sharply as stand productivity declined. Dominance then declined after age 100 years as the growth rate of the 300 largest trees/ha began to decline. The dominance portion of the hypothesis was supported, and further testing may be useful.  相似文献   

5.
袁金兰 《林业研究》1999,10(4):233-235
IntroductionDahurianlarch(L8risgmeliniiRupr.)isoneofthemostimportanttimberspeciesinChina.AsaresuItofovercuttingforseveraIdecades,thenaturaIDahurianIarchforestresourcesaredecliningrapidly.PIantationsofdahurianIarchhavebecomeanimportantpartofforestpreserveresourcesinDaxing'anMountains.ConsequentIystudyingthegroWthofDahurianlarchandformingtheforesttabfesareofsignrficancetofor-estproduction.ThispaperpresentsinformationongroWthandyieIdmodeIsofDahurianlarchpIantations.MethodsDataof4O5stema…  相似文献   

6.
The purpose of this study is to evaluate the effect of growth rate on intra-tree variation in basic density of hinoki cypress (Chamaecyparis obtusa) quantitatively using the statistical modeling technique. Nineteen sample trees were harvested from 50-year-old hinoki stand which consists of two different growth rate plots. Disks were cut from sample trees at height positions of 2, 4 m, and then 4 m intervals until 16 m position. Radial strips were cut from the disks, and ring widths and basic density were measured at 5-ring intervals. The basic density decreased with age at any height positions. The linear mixed model was fitted to the age trend data having two nested grouping levels, i.e., tree and position within tree. Models having various mean and covariance structures were tested in devising an appropriate wood density model. The model, consisting of the mean structure with quadratic function of cambial age was able to describe the intra-tree variation in basic density. The model containing the random effects which consist of effect of the tree level and vertical stem position level explained the density variation adequately. The growth rate did not show the significant effect on the basic density variation within the stem.  相似文献   

7.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

8.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

9.
Fire hazard reduction treatments are commonly applied to mixed-species coniferous forests in western Montana, USA, to modify fuels structures and alter the competitive environments of individual trees. An improved understanding of how competition can be measured and how it conditions individual tree growth is needed for projecting the development of these forests, with and without treatment. Numerous studies have evaluated how competition affects tree growth and many indices have been developed to quantify the competition an individual tree experiences. These studies suggest that no single competition index or a single class of indices is universally superior; indices perform differently according to forest type and forest conditions. We chose several widely used distance-independent and distance-dependent competition indices, and also derived anisotropic distance-dependent indices from estimates of light interception by tree crowns. We evaluated the effectiveness of these competition measures for predicting basal area increment (BAI) of Pinus ponderosa, Pseudotsuga menziesii, and Larix occidentalis in western Montana. The best distance-dependent competition indices explained a larger proportion of growth variation than the best distance-independent indices (64% vs. 56%). This result indicates that competition is an important growth determinant in these forests and that competition varies locally, with variable tree densities and relatively complex stand structures creating heterogeneous neighborhood conditions. Competition indices derived from light interception models were only weakly correlated with other indices and performed poorly in terms of predicting tree growth. This result accords with previous observations that competition for light is not the primarily growth limitation for trees in the semi-arid conditions of western Montana. More sophisticated light availability models could be used to better assess variability in light interception and its marginal contribution to predictive accuracy of radial tree growth. Diameter and distance-dependent BAI models were developed for growth prediction at the species level and for all species combined.  相似文献   

10.
Thinning of Korean pine (Pinus koraiensis Sieb. et Zucc.) is used to facilitate timber and cone production. The present study in Northeast China investigated the effects of thinning intensity on individual tree growth, temporal variation in cone yield, and seed quality in Korean pine plantation. In 2005, five thinning intensity levels (none, extreme, heavy, moderate and light) were set in 15 permanent plots in a 32-year-old Korean pine plantation at Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province. We recorded tree growth and seed cone production from 2013 to 2016, i.e., from 8 to 11 years after thinning. Except for height growth, thinning increased tree growth (diameter at breast height and crown size) and improved cone yield. The extreme thinning treatment (to 300 trees per hectare) resulted in the largest tree diameter, tree volume, crown size and 4-year cone production per tree. The highest cone yield per tree in the mast year (2014) was observed when stands were thinned to 500 trees per hectare (heavy thinning). Although the best cone and seed quality and the largest cone and seed mass per tree were recorded in the heavily thinned stand, no significant differences were found between heavy and moderate thinning stands (750 trees per hectare). At the stand level, the moderately thinned stand had the highest basal area, stock volume and seed cone production per stand. Our results suggest that thinning to 750 trees per hectare will improve timber and cone productivity in 40-year-old P. koraiensis stands.  相似文献   

11.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

12.
13.
Growth and yield models were developed for individual tress and stands based on336 temporary plots with 405 stem analysis trees of dahurian larch(Larix gmelinii(Rupr.)Rupr.)plantations throughout Daxing’anling mountains.Several equations were selected using nonlinearregression analysis.Results showed that the Richards equation was the best model for estimatingtree height,stand mean helght and stand dominant height from age; The Power equation was thebest model for prediction tree volume from DBH and tree height; The logarithmic stand volumeequation was good for predicting stand volume from age,mean height,basal area and other standvariables.These models can be used to construct the volume table, the site index table and other for-estry tables for dahurian larch plantations.  相似文献   

14.
Three versions of an explanatory model to simulate competition between trees within forest stands are presented, based on the distribution of photosynthetically active radiation (PAR) over the trees in the stand. From the amount of PAR absorbed, the rates of assimilation and volume increment are calculated for the trees, which are presented in size classes. Volume increments calculated this way for periods of 35–45 years are compared with measurements from permanent field plots to evaluate different versions of the model.In the first elementary version of the model, it is assumed that the foliage of all trees is distributed uniformly over the field area, neglecting any differences in individual tree height. In this case, the growth of each tree is proportional to its share of the total foliage area of the stand and approximately proportional to its size. This model version slightly underestimated the variation in diameters observed in the field plots.The second version of the model takes into account differences in tree height. As a result of the prior assumption that the foliage of all classes is distributed uniformly over the field area, this model version severely overestimated the shading of short trees by tall neighbours, and the variation in diameters was overestimated as compared to the field data.The third version of the model accounts for clustering of needles within individual crowns in addition to height differences between the classes. This approach gave the better fit to the field data for normally stocked and for dense stands.  相似文献   

15.
Fruit load was altered by flower thinning on three- and four-year-old, field-grown apple trees. Increasing fruit load led to increases in dry matter production per unit leaf area and partitioning to fruit and to decreases in fruit size, percentage fruit dry matter, dry matter partitioning to new shoot growth, thickening of existing woody tissue and root growth. Flower bud production for the following spring was also negatively affected by an increase in fruit load. Leaf photosynthesis was increased in cropping trees in July and August at the time of maximum fruit dry weight increase. Calculated light interception was linearly related to leaf area. The efficiency of conversion of intercepted photosynthetic active radiation to dry matter energy equivalents was 3.3% in heavily cropping trees and 1.8% in non-cropping trees. Total dry matter production was linearly related to both leaf area and light interception, but the variance accounted for by the regression was more than doubled if fruit dry matter or fruit number was included in the regression.  相似文献   

16.
McJannet D  Vertessy R 《Tree physiology》2001,21(12-13):1001-1008
We conducted thinning trials in a 5-year-old Eucalyptus globulus ssp. globulus Labill plantation near Warrenbayne, northeastern Victoria, Australia, where soil salinization and waterlogging are common, and assessed treatment effects on tree growth, water use and survival. Half-hectare plots were thinned from the original density of 1100 stems ha(-1) to densities of 800, 600 and 400 stems ha(-1), and stem diameter increment, leaf area index, transpiration, canopy interception and depth of tree water source monitored for 21 months. Two drought periods occurred during the study, rainfall was 30% below the long-term average and there was severe mortality in all three plots. Analysis of deuterium abundance in soil and xylem water indicated that the trees accessed water only from the top meter of the soil profile. Transpiration rates were higher in the most heavily thinned plot than in the least thinned plot, which underwent a reduction in basal area during the study. The most heavily thinned plot increased in basal area by 10% during the study. Edge trees had significantly greater diameters than trees from the middle of the plots.  相似文献   

17.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

18.
This investigation of three Abies alba stands differing in stem density (338–715 per ha) and vertical structure (one-storeyed or multi-layered) explored the relations between distance from neighbouring tree stems and local canopy openness and selected topsoil properties. The null hypothesis was that in relatively densely stocked forests of close–random stem distribution topsoil morphology, pH and moisture do not differ in inter-crown and under-crown patches. In three plots 1.1 ha in area, soil samples were taken in a square grid 5.0 × 5.0 m and analysed using semivariogram estimation and spatial autocorrelation. The local configuration of trees around the sampled locations was characterised using hemispheral photography and a local stand density index based on tree locations and diameters. The largest portion of the total variation in the soil variables analysed (68–100%) was attributable to small-scale variation in scales <5 m. In all stands, irrespective of density and vertical structure, local stand density/canopy openness correlated positively/negatively with ectohumus layer thickness but negatively/positively with upper soil pH and moisture. Variation in the local configuration of trees explained up to 17% of the total variation in organic horizon thickness, up to 22–29% in topsoil pH (depending on the horizon) and up to 19–27% in topsoil moisture. The results indicate that even in stands of random tree patterning, stem neighbourhood and small-scale variation in canopy density may contribute significantly to topsoil heterogeneity and potentially affect the functioning and structure of forest floor vegetation.  相似文献   

19.
Radiation-use efficiency (RUE) relates biomass production to the photosynthetically active radiation (PAR) intercepted by a plant or crop. We determined RUE and biomass partitioning coefficients of young olive (Olea europaea) trees for use in a general growth model. In 1995, 1-year-old olive trees var. 'Picual' were planted at a density of either 0.5 or 2.0 trees m(-2) near Córdoba, Spain, at a site providing favorable growth conditions. During the experiment (1995-1997), both PAR interception by the canopy and plant area index (PAI) were measured with radiation sensors. Regular harvests were performed to determine leaf area and biomass accumulation in roots, wood (stem, branches and trunk) and leaves. Leaf, wood and root biomass partitioning coefficients were calculated. The leaf area partitioning coefficients were also estimated. Dry matter production was linearly related to cumulative intercepted PAR. Seasonal RUE, calculated as the slope of the regression of aboveground biomass and cumulative intercepted PAR, was 1.35 g (MJ PAR)(-1). Radiation-use efficiency appeared to respond to environmental conditions, but was independent of planting density and PAI. The young olive trees allocated 0.26 of their total biomass to roots. Partitioning of aboveground dry matter was 0.60 to wood and 0.37 to leaves. As competition increased, dry matter partitioning to wood increased to 0.70.  相似文献   

20.
The mixed hardwood forests of North Alabama and adjacent states contain stands of varied specks composition and stand structure, with much variation associated with the presence of Eastern redcedar (Juniperus viginiana L.) within the stands. This study quantified the composition of 44 stands within these forests with discriminate analysis, cluster analysis and tree area ratio modeling. Little variation in the presence of specific species was found on plots with Eastern redcedar when compared to plots without this species, but the number of individuals and their portion of the total stand structure did vary between the two types of stands. Twenty-seven species were grouped into six clusters, with associated species differing between plots with and without eastern redcedar. Eastern redcedar sites did appear to reflect lower productivity, with the trees smaller in diameter and shorter in height. Additional stand structure information is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号