首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Eighty-two varieties of rice from different regions in Thailand were selected to explore the Waxy (Wx)gene diversity and indica-japonica differentiation of chloroplast DNA. A comparison of the 5 splice site in the first intron was made between glutinous and nonglutinous rice. It revealed that non-glutinous with low-amylose content and glutinous rice were characterized as the Wxb allele based on the G-to-T base substitution, whereas non-glutinous rice with intermediate and high amylose carried the Wxa allele. Four Wx microsatellite alleles, (CT)n repeat, (n = 16,17,18 and 19) were found in glutinous rice. In contrast, non-glutinous rice showed five Wx microsatellite alleles (n = 11, 16, 17, 18 and 19). The (CT)17 allele was prominent allele in Thai population, while the (CT)11 allele was found only in intermediate and high amylose rice varieties from southern Thailand. Almost all of upland rice grown by various ethnic groups in northern Thailand were characterized as japonica type based on their having the PstI-12 fragment in their cpDNA, whereas most of rainfed lowland varieties from other regions of Thailand were indica. This exploration of DNA-based genetic markers is important, as it enhances our ability to describe and manipulate sources of genetic variation for rice breeding programs.  相似文献   

2.
The waxy (Wx) gene encodes a granule-bound starch synthase (also called Wx protein) that is involved in synthesizing amylose in the starch grains of cereals, including common wheat (Triticum aestivum L.). Because amylose content affects the quality of food products made from wheat flour, Wx alleles affecting amylose content are of interest. Five wheat Wx alleles (Wx-A1c, -A1d, -A1e, -A1i and -A1j) that produce polymorphic Wx proteins on electrophoretic gels were investigated in terms of amylose content in starch and DNA sequences. Measurement and electrophoresis of gelled starch showed that apparent amylose contents of the genotypes were as follows: Wx-A1e, 2.9 % (= waxy phenotype) < -A1i, 8.0 % < -A1c, 16.8 % < -A1j, 22.6 % = level of wild type allele -A1a. DNA sequencing of the five alleles identified single nucleotide polymorphisms (SNPs) and insertion/deletion variations compared to Wx-A1a. A particular SNP causing amino acid changes in Wx-A1e and -A1c was identified as the factor responsible for decreased amylose. A SNP in Wx-A1d should cause an amino acid change and be responsible for an altered Wx-A1d protein. A transposable-like element of 376 bp present in the 3′ untranslated region (UTR) of Wx-A1i most likely lowered the levels of Wx protein and amylose through aberrant mRNA. The fifth allele, Wx-A1j, possessed four SNPs, two of which altered amino acids in the Wx-A1j protein and should cause polymorphism in the Wx protein. Based on the DNA sequences, functional markers for Wx-A1c, -A1d, -A1e and -A1i were developed.  相似文献   

3.
The granule-bound starch synthase (GBSS I) encoded by the Wxgenes, is involved in amylose synthesis. For analyses of mechanisms of amylose synthesis and associated starch properties in hexaploid wheat, eight possible genotypes having different combinations of the three null alleles at the Wx loci with a common genetic background are a prerequisite. A near-isogenic population of doubled haploid (DH) lines was produced from Chinese Spring × waxy Chinese Spring F1 plants using the wheat × maize method. The Wx protein phenotypes of the DH progeny were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and found that the null alleles at each of the three Wx loci segregated in a Mendelian fashion. A field trial demonstrated no differences between the eight types for ear emergence time, plant height and grain yield traits. Amylose content in the endosperm starch was highest in the wild type while lowest in the waxy type having no Wx proteins. Comparison between single null types and double null types indicated that the amylose synthesis capacity of Wx-A1a allele is the lowest. Pasting properties of starch are the highest in the waxy type, followed by the double null types. Consequently, both peak viscosity and breakdown were negatively correlated with amylose content. The chain-length distribution analysis of amylopectin structure revealed no clear difference among the eight types,suggesting that the reduced GBSS I activity due to introgression of the null Wx alleles does not affect either the chain length or the degree of branching of amylopectin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Grain hardness plays an important role in determining both milling performance and quality of the end-use products produced from common or bread wheat. The objective of this study was to characterize allelic variations at the Pina and Pinb loci in Xinjiang wheat germplasm for further understanding the mechanisms involved in endosperm texture formation, and the status of grain texture in Chinese bread wheat. A total of 291 wheat cultivars, including 56 landraces, and 95 introduced and 140 locally improved cultivars, grown in Xinjiang, were used for SKCS measurement and molecular characterization. Among the harvested grain samples, 185 (63.6%), 40 (13.7%), and 66 (22.7%) were classified as hard, mixed and soft, respectively. Eight different genotypes for the Pina and Pinb loci were identified, including seven previously reported genotypes, viz., Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1p, Pina-D1a/Pinb-D1q, Pina-D1a/Pinb-D1aa, Pina-D1a/Pinb-D1ab, and a novel Pinb allele, Pinb-D1ac. This new allele, detected in Kashibaipi (local landrace) and Red Star (from Russia) has a double mutation at the 257th (G to A substitution) and 382nd (C to T substitution) nucleotide positions of the coding region. Pina-D1b, Pinb-D1b, and Pinb-D1p were the most common alleles in Xinjiang wheat germplasm, with frequencies of 14.3%, 38.1% and 28.6% in hard textured landraces, 25.5%, 56.9% and 11.8% in hard introduced cultivars, and 24.8%, 47.8% and 26.5% in hard locally improved cultivars, respectively. The restriction enzymes ApaI, SapI, BstXI and SfaNI were used to identify Pinb-D1ab or Pinb-D1ac, Pinb-D1b, Pinb-D1e and Pinb-Dg, respectively, by digesting PCR products of the Pinb gene. The unique grain hardness distribution in Xinjiang bread wheat, as well as the CAPs markers for identification of the Pinb alleles provided useful information for breeding wheat cultivars with optimum grain textures. Liang Wang and Genying Li—contributed equally to this work.  相似文献   

5.
Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Pre-harvest sprouting (PHS) reduces the quality of wheat (Triticum aestivum L.) and the economic value of the grain. The objective of this study was to evaluate the diversity of the Viviparous-1B (Vp-1B) gene associated with PHS tolerance in a collection of 490 widely grown winter wheat varieties from central and northern Europe. Four alleles of Vp-1B were found in the wheat varieties tested, three of which (Vp-1Ba, Vp-1Bb and Vp-1Bc) had previously been identified in Chinese wheat varieties. The fourth was a new allele which had a 25-bp of deletion in the third intron region compared with the nucleotide sequence of Vp-1Ba, and was designated as Vp-1Bd. The frequencies of different alleles in this set of European wheat germplasm were: Vp-1Ba (54%) > Vp-1Bc (21%) > Vp-1Bd (20%) > Vp-1Ba + c (4%) > Vp-1Bb (1%), with Vp-1Bb being present only in two French varieties, ‘Altria’ and ‘Recital’. In addition, the frequencies of the alleles differed in varieties from different European countries. For example, Vp-1Ba had the highest frequency (76%) in varieties included in the UK National List (NL), but was least frequent in the Recommended List (RL) of Sweden (19%). Similarly, Vp-1Bc was present with the highest frequency (58%) in wheat varieties from Sweden, and the lowest in UK NL varieties (8%) while Vp-1Bd had the highest frequency of 32% in German varieties, and the lowest in Sweden varieties with only 8%. The Vp-1Ba allele was present in over half of the UK wheat varieties tested but the frequency was lower in RL varieties than in NL ones. Furthermore, heterogeneities were found between Vp-1Ba and Vp-1Bc in the varieties from Sweden, Netherlands, Germany and UK.  相似文献   

7.
Granule-bound starch synthase (GBSS) is the primary enzymeresponsible for the synthesis of amylose in amyloplasts of cereal endospermcells. In bread wheat there are three structural genes (Wx-A1, Wx-B1,and Wx-D1) encoding for isoforms of GBSS. The loss of one or moreGBSS isoforms results in the reduction (partial-waxy) or absence (waxy) of amylose in the starch. Waxy wheats may find application inthe production of modified food starch and their flour may be used toextend the shelf life of baked products. In order to breed high qualitywheats able to produce bread with delayed staling, the genetic variabilityfor the waxy trait in our germplasm has been investigated. Weanalysed 288 cultivars of bread wheat, 139 cultivars of durum wheat andabout 200 accessions from other Triticum species. Gel electrophoresisshowed 63 bread wheats deficient in the Wx-B1, one in the Wx-A1 and one in the Wx-D1 protein isoforms, as well as one Triticum dicoccum lacking the Wx-A1 isoform. None of the analysedTriticum monococcum, Triticum durum, Triticum speltaand Triticum timopheevi accessions showed mutations at the Wxloci. The wheat accessions with Wx mutations were evaluated with aRapid Visco Analyser (RVA) to investigate starch properties. All theanalysed cultivars showed Peak Viscosity and Final Viscosity different fromthe normal wheat. Other analyses to evaluate the rheological characteristicsof the partial-waxy genotypes are under way and a breedingprogramme to select new waxy wheat varieties is in progress  相似文献   

8.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

9.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

10.
A genetic factor that blocks the cannabinoid biosynthesis in Cannabis sativa has been investigated. Crosses between cannabinoid-free material and high content, pharmaceutical clones were performed. F1s were uniform and had cannabinoid contents much lower than the mean parental value. Inbred F2 progenies segregated into discrete groups: a cannabinoid-free chemotype, a chemotype with relatively low cannabinoid content and one with relatively high content, in a monogenic 1:2:1 ratio. In our model the cannabinoid knockout factor is indicated as a recessive allele o, situated at locus O, which segregates independently from previously presented chemotype loci. The genotype o/o underlies the cannabinoid-free chemotype, O/o is expressed as an intermediate, low content chemotype, and O/O is the genotype of the high content chemotype. The data suggests that locus O governs a reaction in the pathway towards the phenolic cannabinoid precursors. The composition of terpenoids and various other compound classes of cannabinoid-free segregants remains unaffected. Backcrossing produced cannabinoid-free homologues of pharmaceutical production clones with potential applications in pharmacological research. A new variant of the previously presented allele ‘B 0’, that almost completely obstructs the conversion of CBG into CBD, was also selected from the source population of the cannabinoid knockout factor.  相似文献   

11.
The non-transgenic manipulation of starch properties in common wheat (Triticum aestivum L.) generally implies combining mutant alleles of the particular gene copies in all three subgenomes (A, B and D). The redundancy of the hexaploid wheat chromosome set substantially complicates the identification of recessive mutations and breeding. Nevertheless, naturally occurring or induced genetic polymorphism has already been successfully exploited for the production of waxy (GBSSI-deficient) and elevated amylose (SSIIa-deficient) wheats. However, in order to achieve the amylose content above 50% of wheat endosperm starch, it may be necessary to inactivate the starch branching enzyme (SBEIIa) isoforms, as the RNAi repression results and gene expression data strongly suggest. The identification of null SBEIIa alleles and their combination in a single genotype is therefore a promising approach to the production of non-transgenic high-amylose wheat; however, wheat SBEIIa polymorphism has not been characterized as of yet. In order to develop an approach to SBEIIa mutation screening, we sequenced the SBEIIa central region (exons 9–12) from the three subgenomes of common wheat cv. Chinese Spring and the A genome of diploid einkorn T. monococcum. The genome-specific primers were developed that amplify the exons downstream from intron 11 selectively from each homeologous gene. Using a single-stranded DNA conformation polymorphism (SSCP) approach, we screened 60 wheat cultivars, landraces, and rare species for naturally occurring SNPs in exons 12, 13 and 14 of the three SBEIIa homeologs. In total, 13 SNPs were discovered in the A and B wheat genomes. Two of these SNPs affect the amino acid sequences of SBEIIa isoforms and may change the enzyme functional properties. The presence of restriction site polymorphism at SNP positions enables their easy genotyping with CAPS assays. Our results indicate that the mining for naturally occurring sequence polymorphism in starch biosynthesis genes of wheat can be successfully performed at the DNA level, providing the starting point for a search for SBEIIa mutants at a larger scale.  相似文献   

12.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

13.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot.  相似文献   

14.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

15.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

16.
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85 and 96 cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.  相似文献   

17.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

18.
To clarify the polyploid origin of the sweetpotato, we analyzed retentions of three distinctive types of Waxy intron 2 (Wx-In2) variants among 27 sweetpotato lines and 24 selected relatives and their phylogenetic relationships with Wx-In2 from 11 closest relatives. The three types of Wx-In2 effectively distinguish three diploid constituent genomes of very close homeology in the sweetpotato: Type I is characteristic of some loci in Genome I and III, and Types II and III are specific to loci in Genome II and III. The Type I Wx-In2 variation was found to be retained in 19 sweetpotato lines, Ipomoea littoralis Blume (4×), I. tabascana (4×), and I. tenuissima (2×); Type II to be retained in all 27 sweetpotato lines, I. littoralis Blume, and two I. trifida accessions; Type III to be retained in 13 sweetpotato lines, I. tenuissima, and four distantly related species. Because of the nature of independent random divergence of orthologous intronic sequences, these highly selective retentions of genome-specific or characteristic sweetpotato Wx-In2 variations among four diploid or tetraploid sweetpotato relatives are consistent only with separate lineages of diploid genomes of the sweetpotato. Such an allohexaploid origin of the sweetpotato probably occurred via hybridization between I. tenuissima and I. littoralis Blume, derived earlier from I. trifida and an unidentified species sibling to I. tenuissima. However, neither the involvement of I. tabascana nor a multiple origin of the sweetpotato can be ruled out. The inference is supported by maximal likelihood relationships between the three types of Wx-In2 from the sweetpotato and Wx-In2 from its 11 closest relatives.  相似文献   

19.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

20.
Polish apple cvs: ‘Ligol’, ‘Odra’ and ‘Primula’ served for studies of self-incompatibility. Basing on available sequence data, a new set of primers upstream and downstream of the hypervariable (HV) region of apple S-RNases were designed. Using the RT-PCR method, cDNA was amplified on RNA isolated from styles. PCR products were cloned and sequenced. A new trans-generic S-RNase allele, designated as Skb (GenBank accession no. EU443101), was discovered in cvs ‘Odra’ and ‘Primula’. Nucleotide sequence alignment revealed that Skb-RNase shows 98% identity to SaucS19-RNase from Sorbus aucuparia and 97% identity to CmonS17-RNase from Crataegus monogyna. The occurrence of extensive intergeneric hybridization among extant Pyrinae is considered since the deduced amino acid sequence of Skb-RNase from M. × domestica showed higher similarity to CmonS17 from C. monogyna, SaucS19-RNase from S. aucuparia, St from Malus transitoria, S5-RNase and S3-RNase from Pyrus pyrifolia, and S40-RNase from P. ussuriensis than to S-alleles from Malus × domestica and all of them are grouped in the same cluster of phylogenetic tree. In respect to extremely high similarities between aforementioned S-RNases it could be possible that these alleles existed before the separation of Malus, Pyrus, Sorbus and Crataegus genera. Within Malus, the Skb-RNase from M. × domestica and St-RNase from M. transitoria show 100% identity of the HV region at the deduced amino acid level, suggesting that these S-RNases diverged more recently than the other Malus S-RNases. In ‘Ligol’, the agronomically most important cultivar in Poland, the S2 and S9 were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号