首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
李祎  杨顺瑛  郝东利  苏彦华 《土壤》2020,52(6):1112-1120
以拟南芥野生型、amt1.1和amt1.3为实验材料,采取土培的方法,以正常培养液(4mmol/L NH4+)培养,在20mmol/L NH4+的胁迫下,通过在培养液中添加0%(T1)蔗糖、5%(T2)蔗糖,测定地上部分的鲜重,叶绿素,游离NH4+,可溶性糖,可溶性蛋白,谷氨酰胺合成酶(GS)、谷氨酸脱氢酶(GDH),矿质元素含量等指标,研究外源蔗糖对NH4+胁迫拟南芥碳氮代谢的影响。结果表明,T1处理下,拟南芥生长受到严重的抑制,鲜重,GS,GDH酶活性降低,游离NH4+含量,叶绿素含量,可溶性糖和可溶性蛋白含量增加,植株的N、P、K、Ca的含量增加,Mg、Fe的含量减少。其中col-0在T1处理下受到的抑制比amt1.1和amt1.3更为显著。与T1处理相比较,T2处理增加了拟南芥植株的鲜重,显著提高了可溶性糖和可溶性蛋白含量,提高了GS和GDH的活性;降低了叶绿素和游离NH4+的含量,提高了植株体内的N、P、K、Ca,Mg的含量,降低了植株Fe的含量,其中,外源蔗糖对col-0高NH4+毒害的缓解更为显著。  相似文献   

2.
3.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

4.
Strawberry (Fragaria ananasa) plants were grown in hydroponics in a greenhouse, where the supply of different ammonium (NH4+): nitrate (NO3?) ratios, was investigated to reduce the negative effect of alkalinity in nutrient solutions. The experiment was arranged in factorial combination with two factors, NH4+:NO3? ratios (0%:100%, 25%:75%, 50%:50%, 75%:25%, and 100%:0%) and bicarbonate (0, 25, 50, and 75 mM; NaHCO3). Plants treated with increasing bicarbonate concentrations exhibited significantly inhibited growth. In plants treated with NH4+ and NO3? simultaneously, there was a counteraction of the bicarbonate-induced growth suppression. Sole NO3? application in the presence of high bicarbonate resulted in poor growth and plant death due to high alkalinity. The adverse effect of alkalinity on SPAD values and maximal quantum yield of PSII photochemistry (Fv/Fm) alleviated with increasing proportion of NH4+ in nutrient solutions. The results showed that fruit numbers and yield of strawberry increased with elevation of NH4+ in nutrient solutions.  相似文献   

5.
In this work, the response of wheat (Triticum aestivum L.), rye (Secale cereale L.), oat (Avena sativa L.), and pea (Pisum sativum L.) to bromides of potassium (KBr) and ammonium (NH4Br) was studied. All plants were capable of accumulating high concentrations of bromine (Br). However, the Br accumulation depended on the Br compounds presented in the growth medium and plant species. The highest Br concentrations were observed in leaves and roots of the seedlings germinated in the medium spiked with KBr. Oat accumulated more Br than other plants and the lowest Br accumulation was observed in pea. The bioaccumulation of Br resulted in suppression of plant biomass and concentrations of several essential nutrients (K, Na, Ca, Mg, Zn and Cl). The most negative effects were caused by NH4Br. Probably, this action was due to cumulative effects of Br- and NH4+. Among other plant species, the most tolerant to bromides was oat and the most sensitive was wheat.  相似文献   

6.
ABSTRACT

Aspects of ammonium (NH4 +) toxicity in cucumber (Cucumis sativus L.) were investigated following growth with different N sources [nitrate (NO3 ?), NH4 +, or NH4NO3] supplied in concentrations of 1, 5, 10, or 15 mM. Plant dry weights and root: shoot ratios were lower with NH4 +-fed plants than with NO3 ?-fed plants. Ammonium accumulated strongly in leaves, stem, and roots when the concentration in the growth medium exceeded 1 mM. The increase in tissue NH4 + coincided with saturation of glutamine synthetase activity and accumulation of glutamine and arginine. Low tissue levels of calcium and magnesium in the NH4 +-fed plants constituted part of the NH4 +-toxicity syndrome. Additions of small amounts of NH4 + to NO3 ? -grown cucumber plants markedly increased the growth.  相似文献   

7.
ABSTRACT

Interactions between nitrate (NO3 ?), potassium (K+), and ammonium (NH4 +) were investigated using hydroponically grown cucumber (Cucumis sativus L.) plants. Ammonium as the sole nitrogen (N) source at 10 mM was toxic and led to overall growth suppression, chlorosis, and necrosis of leaves. After 20 days, 50% of the plants were dead. However, when NO3 ? was supplied at very low concentration together with high NH4 + (only 1% of total 10 mM N) all seedlings survived and their growth was improved. High K+ concentration (5 mM) also alleviated NH4 + toxicity and increased plant growth several fold compared to intermediate concentration of K+ (0.6 mM). Leaf total N and 15N derived from 15N-labelled NH4 + increased in the presence of NO3 ?, but decreased at high K+ concentration. High K+ supply enhanced total carbon (C) and δ 13C and stimulated GS and PEPCase activities in leaves and roots. Nitrate supplementation had no effect on GS or PEPCase activities. It is concluded that K+ may alleviate NH4 + toxicity, partly by inhibiting NH4 + uptake, partly by stimulating C and N assimilation in the roots.  相似文献   

8.
Abstract

While it is known that superoptimal concentrations of the nitrate (NO3 ?) ion in solution culture do not increase NO3 ? uptake or dry matter accumulation, the same is not known for the ammonium (NH4 +) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4 + concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4 + concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with the increased NH4 + concentration. The NH4 + uptake system, which is saturated at less than 1 mM NH4 +, is able to regulate uptake of NH4 + at concentrations as high as 10 mM.  相似文献   

9.
Nitrogen is taken up by most plant species in the form of nitrate and ammonium. The objective of this study was to investigate the effect of different nitrogen forms on the growth of watermelon seedlings. Plants were grown in hydroponic culture with five nitrate (NO3?)/ammonium (NH4+) ratios (100/0, 75/25, 50/50, 25/75, 0/100). When the proportion of NH4+ was increased, the leaf number, leaf area, shoot height, net photosynthesis, biomass, and root growth were significantly decreased. Higher concentrations of nitrogen (N) and phosphorus (P) were observed when plants were supplied with mixed NO3? and NH4+ compared to NO3? or NH4+ alone, whereas the concentrations of potassium (K), calcium (Ca), and magnesium (Mg) were decreased with increasing NH4+. The microelements concentrations were generally increased with more NH4+ added. In addition, plants fed with higher NO3?/NH4+ ratios resulted in more minerals accumulation.  相似文献   

10.
ABSTRACT

An experiment was conducted to study the effects of nitrate (NO3 ?) and ammonium (NH4 +) ratios in nutrient solutions on the growth and production of fruits, runners, and daughter plants of strawberry Fragaria x ananassa Duch., grown in a hydroponic system. Five treatments were applied, consisting of different proportions of NH4 + and NO3 ? in the nutrient solution. The NH4 +:NO3 ? ratios were: T0 = 0:4, T1 = 1:3, T2 = 2:2, T3 = 3:1, and T4 = 4:0, at a constant nitrogen (N) concentration of 4 mol m?3. Growth and morphogenesis were characterized by monitoring leaf-area increase, number of flowers and fruits per plant, and number of daughter plants of first and second generations. Nitrogen and carbon (C) content were measured at the end of the experiment in the organs of both mother and daughter plants. None of the variables related to the growth of the mother plant was affected by the treatments. However, the number of fruits increased with the proportion of NH4 + in the nutrient solution. The number of daughter plants produced was affected only at high NH4 + proportions, and their size (dry matter per daughter plant) and fertility (number of second-generation plants per first-generation plants) were reduced. The N or C content of the plants was not significantly affected by the treatments, but the C/N ratio in the crowns of mother plants was higher in treatments with 25% and 50% NH4 + in the nutrient solution.  相似文献   

11.
Abstract

Numerous investigations have been conducted to quantify Ca‐stimulated ammonium (NH4 +) absorption by plants [this technology is covered under U.S. patent 4,500,335, patent licensee is Tetra Technologies, 250251–45 North, The Woodlands, TX 77380]. Greenhouse and field studies on vegetable crops, field crops and ornamental foliage crops show significant growth increases from increasing Ca++:NH4 + ratios in the growth media. Increased root growth was normally the first plant response, with especially large root and bulb responses observed in onion (Allium cepa L.), beets (Beta vulgaris.), radish (Raphanus sativus L.), and bermudagrass (Cynodon dactylon Pers.). Direct measurements of Ca‐stimulated NH4 + absorption were obtained with isotopic nitrogen (15N) in greenhouse trials. As Ca++ concentrations were increased an increase in 15NH4 + absorption was obtained in all plant species tested. The Ca++ stimulated NH4 + absorption phenomenon in plants is best explained by the “Viets Effect”;, which describes the use of Ca++ or magnesium (Mg++) to increase plant absorption of potassium (K+). Although, increased NH4 absorption effectively increases plant growth, increasing K+ absorption does not. Increased NH4 + absorption has been associated with enhanced photosynthetic rates as well as increased proportions of new metabolites (compounds initially produced from newly captured carbon dioxide) translocated to the nutrient sinks (seeds, bulbs, roots, etc.). The integrity of the plasmalemma is maintained by the presence of extra Ca++, leading to greater turgor pressure (higher water content) and nutrient retention in cells which produce greater growth potential in plants.  相似文献   

12.
Ammonium nutrition of radish plants (Raphanus sativus L.) suppresses their accumulation of Ca. The objective of this study was to determine the critical Ca concentration of radish in order to assess if NH4 + nutrition induces Ca deficiency in this crop. Cultivar Cherry Belle was grown in sand culture in a greenhouse. Nitrogen was provided as nitrate or ammonium salts, and Ca was varied from 1 to 200 mg/liter in solution. With N03’ nutrition, plant growth increased curvilinearly with increased Ca in solution. Calcium accumulation in shoots was a good index of relative root (edible radish) growth. The critical Ca concentration in shoots for optimum root growth was 2% of the dry matter. With NH4+ nutrition, plant growth declined linearly with increased Ca in solution and with Ca accumulation in the shoots. A critical Ca concentration could not be determined for plants grown with NH4 + nutrition. The antagonism between Ca and NH4 + nutrition could not be explained by deficiencies or toxicities of other elements.  相似文献   

13.
The fraction of nonexchangeable ammonium (NH4+) can play an important role in N cycling of soils as a sink (fixation) or a source (release) of NH4+. Recently fixed nonexchangeable NH4+ especially seems to be a significant source for N release. The aim of our study was to determine the effect of residence time on the kinetics of nonexchangeable NH4+ release from illite and vermiculite. Calcium-saturated illite and vermiculite, containing NH4+ that was “fixed” for one and 60 d, were extracted with a H-resin for 0.25 to 384 h. Both clay minerals “fixed” significantly more NH4+ in 60 d than in 1 d, but vermiculite “fixed” more NH4+ than illite. The kinetics of nonexchangeable NH4+ release from illite and vermiculite were well described by the Elovich equation and by a heterogeneous diffusion model. In vermiculite the percentage of nonexchangeable NH4+ release decreased from 84% to 78% when the time of fixation increased from 1 to 60 d. In illite time of residence has not influenced the complete release of newly fixed NH4+.  相似文献   

14.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially high‐yielding grain crop for the Southern Coastal Plain region of the USA. Information on the growth and N nutrition of pearl millet is limited; therefore, this study was initiated with the objective of studying pearl millet growth, N content, N uptake patterns and N‐form preference. Plants were grown in solution culture using a modified Hoagland's solution. Solutions were changed weekly and transpirational losses replaced daily. The N‐form ratios were 1:0, 3:1, 1:1, 1:3 and 0:1 NH4 + to NO3 Uptake was determined by difference between the initial and final solutions. Nitrate and NH4 + uptake patterns were different from each other and were influenced by the ratio of NH4 + to NO3 . After the plants had been transferred to the solutions, ammonium was preferred for the first two weeks, with NO3 preferred thereafter. Nitrate uptake was highest during the grain filling period. Plant growth as measured by leaf, stem, root, and seed weight, plant height, average seed weight, and head length was generally reduced as NH4 + increased. The largest reduction was observed between the 3:1 and 1:0 ratios. Ammonium nutrition had an overall negative effect on pearl millet growth. Ammonium fertilization of pearl millet under conditions that increase absorption of NH4 + over NO3 may have a negative effect on pearl millet growth and development.  相似文献   

15.
Nitrogen (N) by form of nutrition, ammonium (NH4+) or nitrate (NO3?), affects metabolic and physiological processes of plants. In general, a high proportion of N in NH4+ form results in poor growth. Nonetheless, a number of species exhibit optimum growth when high levels of NH4+ are provided. In the present study, lisianthus [Eustoma grandiflorum (Raf.) Shinn] was grown in rockwool cultures and irrigated with nutrient solutions containing 15 mM N with varying proportions of NH4+ and NO3?. The results showed that an increase in NH4+-N form increased plant height, number of flowers and leaves, leaf area, and shoot, stem, and leaf dry weight. The proportion of NH4+ also affected leaf concentration of phosphorus, potassium (K), calcium (Ca), and magnesium (Mg), although leaf N concentration was unaffected. Potassium leaf concentration was higher when a low proportion of NH4+ was supplemented in the nutrient solution; however, plants exhibited a decrease in leaf K concentration and a decrease in leaf Ca as the proportion of NH4+-N increased. Shoot dry weight was higher with low leaf K whereas high leaf Ca was associated with high shoot dry weight. Net photosynthesis rate was higher in plants irrigated with solutions containing 75% of total N in NH4+ form than in those irrigated with solutions of 0 or 25%. The results suggest that lisianthus can tolerate high levels of NH4+, probably associated with a higher assimilation of Ca.  相似文献   

16.
Abstract

Foliar ethylene evolution is used as a bioassay to index physiological stress in plants. Accumulation of uncombined ammonium frequently precedes or coincides with ethylene evolution by stressed plants and also may serve as an index of stress. The objective of this research was to assess the relationship between ethylene evolution and ammonium in plants stressed by toxicity. Ethylene evolution and ammonium accumulation by tomato (Lycopersicon esculentum Mill.) foliage were measured for plants grown in a greenhouse with nutrition from ammonium‐ or nitrate‐based nutrient solutions. Foliar symptoms of stress from ammonium toxicity appeared on plants growing on ammonium‐based solutions. Ethylene evolution increased in response to a progressive array of foliar ammonium accumulation, which varied with source of N and duration of the treatments. Above a threshold of about 0.2 mg NH4‐N g‐1 fresh weight, ethylene evolution rose sharply and linearly with ammonium accumulation. Ammonium accumulation in foliage is suggested as an index to assess environmentally induced stresses in plants.  相似文献   

17.
Abstract

The primary nitrogen forms utilized by plants are ammonium and nitrate. Although the importance of nutrients other than nitrogen for proper turfgrass growth is well established, the amounts of these nutrients in the plant tissue in relation to the use of different N‐forms has not been clearly documented. This study was conducted under greenhouse conditions to determine the effect of N‐form and cutting regime on growth, macronutrient, and micronutrient content of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). Treatments consisted of 100% NO3? (calcium nitrate), 100% NH4 + (ammonium sulfate), and a 50:50 ratio of NH4 +:NO3 ?. Half the turfgrass plants were maintained at a height of 1 cm (cut), while the other half of the plants were not cut until the end of the study (uncut). The uncut 50:50 treatment yielded the highest shoot, verdure, and total plant dry matter, while the uncut NO3 ? treatment produced the highest root dry matter. The uncut NH4 + treatment yielded the least shoot, root, and total plant dry matter. Plants of the uncut NO3 ? treatment had greater accumulation of macronutrients in the shoot and root tissue compared to plants of the NH4 + treatment. The uncut NO3 ? and 50:50 treatments had higher total accumulation of micronutrients compared to the uncut NH4 +‐treated plants. The cut NO3 ? treatment resulted in the highest macronutrient and micronutrient contents in the root tissue in comparison to other cut treatments. The cut treatments had the highest percentage accumulation of nutrients in the verdure tissue, while the uncut treatments had the highest percentage accumulation of nutrients in the shoot tissue.  相似文献   

18.
High rice (Oryza sativa L.) yields are closely related to plant absorption of a large amount of nitrogen (N). However, there is little information on the fate of N applied at the middle growth stages of rice. Labeled 15N ammonium sulfate was applied at the panicle formation stage in Experiment I, and 10 d after heading in Experiment II. Zeolite was also added at the concentration of 0, 0.01, and 0.1 kg kg-1 to increase the cation exchange capacity (CEC) of the soil. The amount of 15N fertilizer in the soil surface water decreased exponentially and the fertilizer disappeared within 2 d after application. The soil that received zeolite at 0.1 kg kg-1 exhibited significantly less 15NH4 +-N in the surface water and in the soil solution than the soil without the zeolite amendment. A significantly larger amount of exchangeable 15NH4 +-N was observed in the high zeolite-treatment of soil compared to the low zeolite-treatment of soil. The amount of exchangeable 15NH4 +-N increased initially, and thereafter decreased to traces 4 d after application in Experiment I, while 6 or 9 d after application in Experiment II. The disappearance of exchangeable 15NH4 +-N could be attributed mainly to the uptake by plants. The zeolite amendment or the time of N application did not significantly affect the amount of immobilized N. The rate of N adsorption was inhibited with increasing zeolite application. Moreover, zeolite application did not increase the recovery percentage of ammonium sulfate by rice plants. The total recovery of applied N ranged from 65 to 75%, irrespective of the zeolite treatments or the time of N application.  相似文献   

19.
The objective of this research was to study the effects of nitrogen (N) forms (NO3, 2.6 mM; NH4+, 2.6 mM; NO3, 1 mM + NH4+, 1.6 mM) on the growth and mineral composition of kiwifruit plants exposed to three boron (B) levels (0.025, 0.1, 0.3 mM). The kiwifruit plants were grown in a 1:1 sand : perlite mixture and irrigated daily with nutrient solutions. Shoot height, mean shoot dry weight, the number of leaves, mean leaf dry weight, and N concentration of NH4‐treated plants were significantly higher compared to the NO3 treatment at all B levels. The concentration of 0.3 mM B significantly reduced shoot height for all N treatments. Boron toxicity symptoms appeared 14 days after starting the experiment, when plants were treated with 0.1 and/or 0.3 mM B. The nitrate supply reduced the B concentration of roots, but B levels of different leaf parts were hardly affected by the N form. Furthermore, the NH4‐N form significantly reduced the Mg concentration of the leaves.  相似文献   

20.
【目的】土壤盐碱化是制约农作物产量的主要因素之一,盐胁迫影响养分运输和分布,造成植物营养失衡,导致作物发育迟缓,植株矮小,严重威胁着我国的粮食生产。在必需营养元素中,氮素是需求量最大的元素,NO-3和NH+4是植物吸收氮素的两种离子形态。植物对盐胁迫的响应受到不同形态氮素的调控,研究不同形态氮素营养下植物的耐盐机制对提高植物耐盐性及产量具有重要的意义。【方法】本文以喜硝植物油菜(Brassica napus L.)和喜铵植物水稻(Oryza sativa L.)为试验材料,采用室内营养液培养方法,研究了NO-3和NH+4对Na Cl胁迫下油菜及水稻苗期生长状况、对Na+运输和积累的影响,以对照与盐胁迫植株生物量之差与Na+积累量之差的比值,评估Na+对植株的伤害程度。【结果】1)在非盐胁迫条件下,硝态氮营养显著促进油菜和水稻根系的生长;盐胁迫条件下,油菜和水稻生物量均显著受到抑制,Na Cl对供应铵态氮营养植株的抑制更为显著。2)盐胁迫条件下,两种供氮形态下,油菜和水稻植株Na+含量均显著增加,硝态氮营养油菜叶柄Na+显著高于铵态氮营养,叶柄Na+含量/叶片Na+含量大于铵营养油菜,硝态氮营养水稻根系Na+含量显著低于铵营养,地上部则相反。3)铵营养油菜和水稻Na+伤害度显著高于硝营养植株。4)盐胁迫条件下,硝态氮营养油菜地上部和水稻根系K+含量均显著高于铵态氮营养。5)盐胁迫条件下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株。【结论】与铵营养相比,硝营养油菜和水稻具有更好的耐盐性。硝态氮处理油菜叶柄Na+显著高于铵态氮处理,能够截留Na+向叶片运输。同时,供应硝态氮营养更有利于油菜和水稻吸收K+,有助于维持植物体内离子平衡。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,表明硝态氮营养油菜和水稻木质部-韧皮部对离子有较好的调控能力,是其耐盐性高于铵营养的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号