共查询到16条相似文献,搜索用时 66 毫秒
1.
基于改进型模糊边缘检测的小麦病斑阈值分割算法 总被引:1,自引:0,他引:1
针对小麦病斑分割不准确、噪声大以及病斑边缘不清晰等问题,结合传统的作物病斑分割方法,提出一种基于改进的模糊边缘检测的图像阈值分割算法。图像预处理方面,在分析了传统模糊边缘检测缺点的同时对算法作了两个方面的改进,使用梯度倒数加权平均滤波方法去除小麦病斑噪声,然后对多层次模糊算法进行数值分层改进,增强病斑边缘信息;最后对传统的阈值分割方法进行了算法改进,采用一种改进的最大类间方差比阈值分割方法,在增强图像边缘的基础上进行阈值分割,改进阈值选取方法,在模糊增强后的小麦病斑图像上进行阈值分割提取出小麦病斑形状特征。对在大田环境下获取的小麦病害图像进行边缘增强和阈值分割试验,与传统固定阈值分割算法试验对比得出,基于改进的模糊边缘增强与阈值分割相结合的改进算法正确分割率达98.76%,相比传统固定阈值分割算法提高了8.35个百分点,漏检比增加了1.29个百分点,噪声比为1.86%,相比减少了8.36个百分点,在运算时间上减少了0.331 s,不仅突出病斑边缘信息,而且分割效率高、噪声小,可为图像分割方法的研究提供了可参考依据。 相似文献
2.
阐述了数字图像处理中常用的经典边缘检测各类算子的算法原理、计算方法,包括一阶经典检测微分算子、二阶经典检测微分算子,在明晰原理方法的基础上对比分析各个算子的优劣之处,分析各个算子的效率、精确程度,同时分析各个算子各自擅长处理的图像类型。通过对边缘检测算子的比较分析,可以较全面地了解经典边缘检测算子的不同适用情况,为实际应用准确选择最合适的算子。 相似文献
3.
针对Harris角点检测算法中角点响应函数(corner response function,CRF)系数阈值与非极大值抑制系数阈值需要人为设定所造成的可变性和随机性等问题,该文提出一种通过计算图像每个像素的自相关矩阵行列式值,构造特征角点图像进行自适应阈值分割的改进Harris角点检测算法.该算法首先通过计算原图像经过方向滤波和低通滤波后各像素的自相关矩阵行列式值,以此构造特征角点图像;然后采用OTSU算法计算特征角点图像分割阈值,从而筛选出预选区域;最后结合改进的非极大值抑制方法提取有效角点.通过5组角点检测对比试验结果数据分析,不同类型图像的角点检测准确率均有提高,高分二号遥感影像的角点检测准确率提高27.06个百分点,可以初步得出,该算法相比传统Harris角点检测算法不但能够自动计算角点检测的最佳阈值,而且能够更准确地定位角点和去除边缘伪角点,从而提高了角点检测的精确度,该研究可为农业遥感影像数据检测提供参考. 相似文献
4.
为了提高采摘机器人的适用性和工作效率,保证成熟苹果果实的及时采摘,需要机器人具有夜间连续识别、采摘作业的能力。针对夜间苹果图像的特点,该文提出一种基于引导滤波的具有边缘保持特性的Retinex图像增强算法。利用颜色特征分量采用具有边缘保持功能的引导滤波来估计出照度分量;进而利用单尺度Retinex算法对图像进行对数变换获得仅包含物体本身特性的反射分量图像;分别对照度分量和反射分量图像增强后,再合成为新的夜间苹果的增强图像。文中选取30幅荧光灯辅助照明下采集到的夜间苹果图像进行试验的结果显示,该文增强算法处理后的30幅图像的平均灰度值,分别比原始图像、直方图均衡算法、同态滤波算法和双边滤波Retinex算法处理后的图像平均提高230.34%、251.16%、14.56%、7.75%,标准差平均提高36.90%、-23.95%、53.37%、28.00%,信息熵平均提高65.88%、99.68%、66.85%、17.53%,平均梯度提高161.70%、64.71%、139.89%、17.70%。且该文算法较双边滤波Retinex方法的运行时间平均减少74.56%。表明该文算法在夜间图像增强效果和运行时间效率上有明显的提高,为后续夜间图像的分割和目标识别提供了保障。 相似文献
5.
针对野外白天不同光照对野生动物监测图像质量造成的影响,提出一种基于Retinex理论的光照自适应图像增强方法。该方法首先使用基于复合梯度的引导滤波估计图像照度分量,克服光照突变造成的伪光晕现象;然后提出一种基于Otus阈值的对比度自适应拉伸方法实现照度分量的校正,克服传统算法过度增强的问题;最后采用照度分量单通道图像计算反射分量图像,实现色彩的保真。该文采用50张保护区实地拍摄的野生动物监测图像为样本进行试验,结果表明,该文算法相比于MSRCR算法、双边滤波Retinex算法和引导滤波Retinex算法色调保真度平均提高81.00%、5.24%和3.58%,信息熵平均提高6.76%、6.23%和2.61%,峰值信噪比平均提高53.43%、5.36%和-2.85%,运算耗时减少-29.03%、78.51%和28.68%,证明该文算法可以有效克服传统Retinex理论算法的过增强、伪光晕现象和灰化效应,实现不同光照条件下野生动物监测图像的自适应增强。 相似文献
6.
针对棉花叶部病斑相互之间存在粘连问题,该文提出了一种自适应分水岭分割方法。该方法在H-minima分水岭分割方法基础上,结合最小二乘圆法误差理论,对图像中每个连通分量进行最小二乘圆拟合,并计算最小二乘圆误差值,通过最小二乘圆误差值大小判断每个连通分量的轮廓不规则度,针对不同轮廓不规则度确定H-minima变换的极小值阈值,根据不同极小值阈值实现棉花叶部粘连病斑的分水岭分割。不同数量粘连病斑分割试验结果表明:该方法实现了棉花叶部粘连病斑数量从2个粘连至5个粘连病斑的自动分割,分割准确率为91.25%,平均运行时间为0.088 s。不同分割方法对比结果显示:该方法能实现对棉花轮纹病、褐斑病、炭疽病、叶斑病和棉铃疫病共5种病害的粘连病斑自动分割,并将距离分水岭分割方法、梯度分水岭分割方法、标记分水岭分割方法、Chan-Vese方法、高斯混合方法与该文方法比较,正确分割率分别为67.8%、36.4%、83.7%、70.3%、82.1%、93.5%,该方法优于其他5种分割方法,有效抑制了过分割问题;在复杂背景、光照不均匀、病斑大小不一致等复杂条件下,该文方法也能较好地实现粘连病斑的分割。该方法不仅能对棉花叶部粘连病斑自动分割,也能为其他作物叶片粘连病斑分割提供参考。 相似文献
7.
目标植株的图像压缩与重构在农作物生长状态检测、田间管理和果树病虫害识别等方面有重要作用。传统的图像压缩感知方法存在重构精度低、时间长等问题。针对这些情况,该文提出一种基于Dog-Leg最小二乘的正则化自适应压缩采样匹配追踪(regularized adaptive compressed sampling matching pursuit based on Dog-Leg,DLRa CSMP)算法。该算法以压缩采样匹配追踪(compressive sampling matching pursuit,Co Sa MP)算法为基础,在迭代过程中采用正则化处理,确保支撑集选取的准确性,并结合变步长自适应思想和Dog-Leg最小二乘算法,在实现稀疏度自适应的同时,提高重构速率;选用Kinect获取目标植株的彩色图像,分别采用HSV彩色空间的亮度和色调特征及Sobel算子的轮廓特征输入至Itti模型中融合构建显著性特征图,以简化复杂背景和突出目标植株。试验结果表明,该算法在采样率为0.50时植株原始图像和显著性特征图的重构时间分别为2.14和1.75 s,较Co Sa MP算法分别缩短6.57和6.31 s,重构效率比CoSaMP算法平均分别提高75.5%和77.9%;图像峰值信噪比分别高达35.16和38.93 dB,较Co Sa MP算法分别提高6.12和5.75 dB,且重构精度比Co Sa MP算法平均分别提高21.6%和15.5%,可以实现植株图像的快速精确重构。 相似文献
8.
针对传统模糊边缘检测算法计算量大、效率低的弱点,利用图像边界点连续的特性,结合模糊边缘检测算法的思想,提出了一种基于模糊理论的改进种子点生长边缘检测算法。利用相应算法建立两张快速查找表,对图像中的像素点通过查表,选取种子点,根据边缘点的判断准则对其进行生长,最终实现边缘检测。实验证明,算法具有较高的效率和较强的抗噪能力。 相似文献
9.
为了快速准确地提取麦田作物行中心线,提出了基于图像特征点粒子群聚类算法的麦田作物行检测。首先,对自然光照下获取的彩色图像运用"过绿颜色因子图像灰度化"、"Otsu图像二值化"、"左右边缘中间线检测提取作物行特征点算法"3步对图像进行预处理。然后,根据农田作物行中心线周围区域的特征点到该直线的距离均小于某一距离阈值的特征,运用粒子群优化算法对每一作物行的特征点分别进行聚类。最后,对每一类的特征点用最小二乘法进行直线拟合获取麦田作物行中心线。试验结果表明,该算法可以对作物断行、杂草、土块等复杂农田环境下的图像进行有效地作物行检测,识别率达95%,识别误差小于3°。与标准Hough算法相比,运行速率提升了一倍。该文可为实现农业机器人田间作业提供参考。 相似文献
10.
机器视觉技术广泛应用于鸡蛋感官品质无损检测研究中,快速得到鸡蛋图像边缘有助于高效识别鸡蛋的几何特征参数。借鉴计算机二分法快速解方程的算法,提出用二分法快速检测图像边缘,把对图像的整体研究转换到具体的行图像来研究,利用行图像信息构建了满足二分法求解条件的方程,并把对边缘的检测构造成对方程的求解问题,从而建立了二分法求解鸡蛋图像边缘的理论基础,最后在应用部分给出了详细的程序实现步骤。试验结果表明:该方法可以检测鸡蛋图像边缘,检测效率提高了约20倍,大大加快了检测速度,可为鸡蛋自动化检测提供更高的效率。 相似文献
11.
随着海参养殖业快速发展,利用水下机器人代替人工作业的海参智能捕捞已成为发展趋势。浅海环境复杂,海参体色与环境区分性差、海参呈现半遮蔽状态等原因,导致目标识别准确率低下。此外由于景深运动,远端海参作为小目标常常未被识别成功。为解决上述问题,该研究提出一种基于改进SSD网络的海参目标检测算法。首先通过RFB(Receptive Field Block)模块扩大浅层特征感受野,利用膨胀卷积对特征图进行下采样,增加海参细节、位置等信息,并结合注意力机制,对不同深度特征进行强化,将计算得出的权重与原特征信息相乘以此获得特征图,使结果包含最具代表性的特征,也抑制无关特征。最后实现特征图融合,进一步提升水下海参的识别精度。以实际拍摄的视频进行测试验证,在网络结构层面上,对传统算法进行改进。试验结果表明,基于改进的SSD网络的海参目标检测算法的平均精度均值为95.63%,检测帧速为10.70帧/s,相较于传统的SSD算法,在平均精度均值提高3.85个百分点的同时检测帧速仅减少2.8帧/s。与Faster R-CNN算法和YOLOv4算法进行对比试验,该研究算法在平均精度均值指标上,分别比YOLOv4、Faster R-CNN算法提高4.19个百分点、1.74个百分点。在检测速度方面,该研究算法较YOLOv4、Faster R-CNN算法分别低4.6帧/s、高3.95帧/s,试验结果表明,综合考虑准确率与运行速度,改进后的SSD算法较适合进行海参智能捕捞任务。研究结果为海参智能捕捞提供参考。 相似文献
12.
大多数现有的基于图像的作物病害诊断方法往往对输入图像的质量具有很高的要求,例如要求背景简单、大景深等等。因此这些方法的预处理过程中需要去除复杂背景,然而这个预处理较难获得理想的结果。此外,当作物病斑面积较小时,会使得获取的图像景深较浅,也导致了这些方法难以抽取精确的病斑区域。为了解决上述问题,该文提出一种利用目标检测来分割病斑图像的方法。首先,该方法对抽取的结构特征和颜色特征进行整合并对特征空间进行量化,从而得到作物病害图像的显著区域。该方法不需要进行去除复杂背景的预处理过程即可得到病斑区域的图像;同时,为了处理浅景深的病害图像,引入了模糊检测方法用以进一步过滤背景和模糊区域的图像。试验中利用多种黄瓜和水稻病害的图片,将该方法与阈值法、图切割法进行了对比,结果表明该方法在效率不明显降低时,其分割效果明显优于阈值法;在分割效果差异不大时,其运行效率明显高于图切割方法;同时,该方法能够对浅景深的作物病害图像的病斑区域进行有效的分割。 相似文献
13.
在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4- LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网络复杂,计算量大,模型体积较大,不适合部署在嵌入式设备中进行实时检测。将YOLOv4的骨干网络CSPDarknet-53替换为MobileNet-v3,MobileNet-v3提取特征可以显著提高YOLOv4的检测速度。为了提高小目标的检测精度,分别设置在网络第39层以及第46层进行上采样特征融合。使用2 513张不同遮挡环境下的火龙果图像作为数据集进行训练测试,试验结果表明,该研究提出的轻量级YOLOv4-LITE模型 Average Precision(AP)值为96.48%,F1值为95%,平均交并比为81.09%,模型大小仅为2.7 MB。同时对比分析不同骨干网络,MobileNet-v3检测速度大幅度提升,比YOLOv4的原CSPDarknet-53平均检测时间减少了132.33 ms。YOLOv4-LITE在GPU上检测一幅1 200×900的图像只需要2.28 ms,可以在自然环境下实时检测,具有较强的鲁棒性。相比现有的目标检测算法,YOLOv4-LITE的检测速度是SSD-300的9.5倍,是Faster-RCNN的14.3倍。进一步分析了多尺度预测对模型性能的影响,利用4个不同尺度特征图融合预测,相比YOLOv4-LITE平均检测精度提高了0.81%,但是平均检测时间增加了10.33 ms,模型大小增加了7.4 MB。因此,增加多尺度预测虽然提高了检测精度,但是检测时间也随之增加。总体结果表明,该研究提出的轻量级YOLOv4-LITE在检测速度、检测精度和模型大小方面具有显著优势,可应用于自然环境下火龙果检测。 相似文献
14.
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLL-YOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP50分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP50分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。 相似文献
15.
针对基于双目视觉技术的作物行识别算法在复杂农田环境下,立体匹配精度低、图像处理速度慢等问题,该文提出了一种基于Census变换的作物行识别算法。该方法运用改进的超绿-超红方法灰度化图像,以提取绿色作物行特征;采用最小核值相似算子检测作物行特征角点,以准确描述作物行轮廓信息;运用基于Census变换的立体匹配方法计算角点对应的最优视差,并根据平行双目视觉定位原理计算角点的空间坐标;根据作物行生长高度及种植规律,通过高程及宽度阈值提取有效的作物行特征点并检测作物行数量;运用主成分分析法拟合作物行中心线。采用无干扰、阴影、杂草及地头环境下的棉田视频对算法进行对比试验。试验结果表明,对于该文算法,在非地头环境下,作物行中心线的正确识别率不小于92.58%,平均偏差角度的绝对值不大于1.166°、偏差角度的标准差不大于2.628°;图像处理时间的平均值不大于0.293 s、标准差不大于0.025 s,能够满足田间导航作业的定位精度及实时性要求。 相似文献
16.
基于机器视觉的果肉多类型异物识别方法 总被引:1,自引:2,他引:1
该文基于机器视觉技术对果冻、罐头灌装前的多品种、多规格、湿态反光果肉进行多类型异物自动检测。根据果肉与异物的颜色和亮度差异大小,提出了对高饱和度彩色果肉采用基于HSI三分量独立性的彩色图像分割算法,对低饱和度彩色果肉采用以形态学边缘检测算法为核心的异物识别图像处理路线。然后采用图像分区,各区域独立计数判断有无异物的策略。对上述路线和策略,分别给出具体流程和算法,最后编程实现,并通过试验验证。试验结果表明,该方法能够有效地检测出多品种湿态块状果肉上的多类型异物,误检率小于5%,能满足实时生产检测准确性要求。 相似文献