首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 397 毫秒
1.
基于温湿度场云图的小麦粮堆霉变与温湿度耦合分析   总被引:8,自引:7,他引:1  
为了研究粮堆霉变和温度场、湿度场的时空耦合关系,该文建立了模拟仓装置,在模拟仓内装入体积比为9∶50的高水分小麦(20.1%,w.b.)和低水分小麦(11%,w.b.),于18℃恒温室内储藏800 h。试验过程中,高水分小麦中心插入30℃的加热元件,短时加热引发粮仓内部湿热迁移,通过构建温、湿度场云图,检测CO_2气体浓度和储藏霉菌变化,揭示温、湿度场与粮堆霉变的时空耦合关系。通过云图观察到湿空气上移而形成窝状高湿区,在温度适宜的条件下,高温中心区由于湿度偏低,几乎不发生霉变,窝状高湿区霉变最严重。当温度降低后,模拟仓内粮堆霉变受到抑制,微生物生长速度减慢。试验结果表明,在温度和湿度的变化和耦合过程中,粮堆霉变不仅是时间的函数,也是空间的函数。由于粮温散失较快,试验过程中,粮堆内没有观察到自发热点。该文可为今后进一步建立粮堆多场耦合规律和储粮过程中霉变发热的监测预报奠定基础。  相似文献   

2.
内衬塑料地下粮食筒仓粮堆温度场研究   总被引:2,自引:2,他引:0  
为了研究地下仓储粮期间粮堆的温度变化,该研究以湿基含水率为23%的高水分玉米为研究对象,首先采用试验方法对内径3 m,高5 m的地下筒仓在静态储藏条件下的仓内温度场的变化进行了分析。然后基于多孔介质传热理论,使用多物理场数值模拟软件COMSOL对试验仓进行了模拟研究。数值模拟基于实际堆粮高度,充分考虑了仓内谷物颗粒呼吸作用对粮堆内温度场分布的影响,研究了不同初始粮温、粮食种类和装粮季节对仓内温度场的影响。结果表明:静态储藏阶段,粮食的呼吸作用较强,粮堆首先在底部开始升温,并逐渐形成高温热芯,随后热芯位置逐渐向粮堆中上部移动,并最终稳定于距装粮线1 m处。初始粮温为35℃时,仓内粮堆温升最高,为6.1℃,温度达到峰值后出现下降趋势;在5种不同种类(玉米、油菜籽、大豆、小麦和稻谷)粮堆中,油菜籽堆平均温升最高,为1.6℃,玉米堆平均温升最低,为1.2℃;不同季节外部环境温度的变化对仓内粮堆温度变化影响很小,仓内粮堆温度在不同季节条件下表现出一致的变化趋势。该研究对地下仓高水分粮储藏期间的温度变化进行了研究,并拓展了数值模拟,可为实际工程提供参考。  相似文献   

3.
玉米粮堆霉变发热过程中的温湿度场变化规律研究   总被引:5,自引:5,他引:0  
为模拟储粮粮堆局部含水率偏高引起的霉变发热现象,进而研究此现象中温、湿度场的变化规律,该文在试验仓内湿基含水率14.0%的玉米粮堆中心加入湿基含水率18.2%的玉米,在30℃室内储藏40 d。试验粮堆由于霉变引起自发热。试验过程中,通过计算玉米粮堆中垂面内高温区和高湿区的面积变化,从而揭示玉米粮堆霉变发热过程中温、湿度场的变化规律。试验结果表明,粮堆中垂面高湿区面积缓慢扩大,高温区面积开始扩大缓慢,但在与周围粮温最高温差升至3.7℃后,面积扩大速率加快,且高温区与高湿区面积的当量半径r与温度差?T成正比,此正比关系经过了粮库浅圆仓的验证。这为进一步定量分析粮食仓储过程中的高温区和高湿区扩散提供了依据。  相似文献   

4.
筒仓静态储粮的边界压力及仓壁摩擦力试验研究   总被引:2,自引:2,他引:0  
为了研究筒仓散装粮堆的边界压力和仓壁摩擦力的分布规律,研制了模型筒仓试验装置,基于仓体的微缝分离设计,实现各分离仓体受力的独立测量。以小麦为例,通过实测,发现不同装粮高度下,粮堆底部压力沿径向呈现不均匀分布特征,其不均匀分布程度随装粮高度逐渐增加;当装粮高度大于筒仓直径后,仓壁侧压力开始逐渐小于Janssen公式计算结果;而仓壁摩擦力在整个粮堆深度范围内均小于Janssen公式计算结果。试验表明,仓壁实测摩擦力与侧压力之比小于小麦与仓壁的摩擦系数,且随粮堆深度的增加不断变化,表明静态储粮下储料与仓壁边界之间尚未达到极限平衡状态;侧压力系数接近主动态,且小于主动土压力系数。研究结果可为散体物料压力理论提供参考。  相似文献   

5.
不同仓型的粮堆温度场重现及对比分析   总被引:1,自引:10,他引:1  
为了揭示不同仓型粮堆内温度场和水气分压场随季节的变化规律及其对储粮安全的影响,该文以天津地区的钢板浅圆仓和平房仓为研究对象,以小麦为储粮目标,采用阵列式分布的温度传感器监测粮堆温度,利用温度拟合算法和WU模型构建粮堆温度场模型,重现粮堆在冬末春初之际和夏季的温度场和水气分压场分布;根据温湿度场耦合理论分析其云图特征,并在此基础上比较2种仓储粮状态的差异。结果表明:夏季,浅圆仓和平房仓的小麦粮堆中均存在大体积的冷芯,使整个粮堆可以安全度夏;冬春交替之际,2种仓的粮堆中均存在多区域分层现象,但由于浅圆仓的表层粮堆水分吸收速率大于平房仓,致使次年春季浅圆仓的粮堆表层更易发生结露;根据平房仓小麦粮堆的等温曲线变化方向可推测有邻仓存在,且由2个毗邻的平房仓温度场融汇度可判定邻仓有储粮。研究结果将为粮堆结露研究提供新思路,为结露预测提供理论依据。  相似文献   

6.
竖向压力和剪切速率对小麦直剪强度及剪胀特性的影响   总被引:5,自引:5,他引:0  
为了得出粮仓设计中粮堆强度和剪胀特性等关键指标,通过直剪试验研究粮堆剪切破坏面上,在竖向压力50~300 k Pa、剪切速率0.78~2.33 mm/min条件下,小麦粮堆单元体的强度和剪胀特性。结果表明:小麦粮堆单元体剪切分为弹性、塑性变形和籽粒压缩3个阶段。小麦粮堆单元体抗剪强度符合莫尔库伦强度准则,剪切速率从0.78 mm/min增大至2.33 mm/min,咬合应力从7.5 k Pa增大至12.9 k Pa,内摩擦角从38.2°变化为35.0°,剪胀角介于5.1°~4.8°之间。弹性阶段发生剪缩,最大剪缩体变小于0.4%;塑性变形阶段发生剪胀,最大剪胀体变大于最大剪缩体变,竖向压力越大最大剪胀体变越小,剪切速率越大随着压力的增大最大剪胀体变的变化越小。研究结果可用于粮仓内粮堆应力、变形的计算,为粮食仓储结构的设计提供依据。  相似文献   

7.
为解决立筒仓中纵向通风方式储粮效果不佳,在储粮机械通风过程中存在通风不均匀等问题,该研究结合纵向通风与横向通风的优点建立了环流通风仓模型,应用EDEM-Fluent流固热耦合方法,对相同工况下,储粮仓两种风道结构在机械通风时的速度场、温度场进行仿真对比分析。结果表明:环流通风速度均匀性指数为0.92,纵向通风速度均匀性指数为0.88,相同工况下环流通风气流在粮仓内分布更均匀。在温度场仿真分析中,纵向通风初期入风口附近区域粮堆温度呈梯度下降,明显低于初始温度,上层粮堆由纵向通风引起的热量传递不明显,受仓顶环境温度影响,粮面温度较粮堆内部低;环流通风初期,上层粮堆在环流通风影响下已经开始进行热量交换,产生温度梯度,通风结束后,纵向通风在粮层高度H=0.5 m处,温度维持26.85℃,H=0.8 m处温度降到27.85℃,整体平均温度降至24.77℃,环流通风仓在这两处温度分别为24.85和25.85℃,整体平均温度降至23.43℃,环流通风整体降温效果优于纵向通风;在颗粒温度场仿真分析中,相较于纵向通风,环流通风仓上下部颗粒温度相差较小,整体降温均匀。在不同通风形式下的粮仓各层温度变化规律...  相似文献   

8.
农户用机械通风钢网式小麦干燥储藏仓的气流场分析   总被引:1,自引:1,他引:0  
为保障农户收获后高水分粮食不落地安全储藏,针对一种仓壁透气中心带通风立筒的圆形钢网式农户储粮干燥仓,应用CFD法对收获后高水分小麦在进行机械通风时的气流场进行仿真分析,将仓内小麦堆等效为多孔介质,分析静压、动压、流量等空间分布规律。结果表明:仓内静压和动压值随半径(横向)增加呈指数衰减;柱面流量随半径呈幂函数衰减;横截面流量随高度呈指数衰减;粮堆区竖向通风均匀度显著优于横向(径向);流量分布为仓底上粮面仓壁,仓壁气流流量只占总流量的24.6%;实仓风速测试结果与仿真分析结果规律一致,平均相对误差为16.35%,表明基于多孔介质模型和CFD法分析钢网式储粮干燥仓的流场分析具有较好的准确性,研究结果为此类钢网式储粮仓流场分析和优化提供了方法和依据。  相似文献   

9.
为研究静动载荷作用下的粮食剪切特性,利用开发的新型粮食动直剪仪,设计了孔隙率为39%、36%、33%以及竖向压力为50、100、150、200k Pa下的小麦单调直剪、往复剪切及往复后单调直剪试验,研究了小麦静动力剪切特性,并对比分析了小麦单调直剪与往复后单调直剪的强度、变形结果。研究结果表明:单调直剪试验中,同一孔隙率下,竖向压力越大,其软化现象越明显,剪胀现象越不明显,剪胀角越小,竖向压力为50、100、150、200k Pa下对应的剪胀角分别为4.5°、3.6°、2.4°、0.7°;同一竖向压力下,随着小麦孔隙率减小,其软化现象越明显,内摩擦角也越大,孔隙率为39%、36%、33%的小麦对应的内摩擦角分别为22.2°、24.4°、28.1°。剪胀角也随着小麦孔隙率减小而增大,对应的剪胀角分别为1.3°、3.6°、9.9°;往复剪切试验中,孔隙率越小,小麦往复剪切软化现象越明显,剪缩现象越不明显,最大剪缩量越小,孔隙率为39%、36%、33%的小麦对应的最大剪缩量分别为2.77、1.74、1.15 mm。往复后单调直剪与单调直剪试验结果对比表明,往复后单调直剪的小麦抗剪强度明显增大,其剪胀现象更明显,最大剪胀量也增大。试验结果可为粮仓结构安全性设计,尤其是粮仓结构动力分析提供依据。  相似文献   

10.
不同地区粮仓中粮堆的含水率会有较大的差异,为了明确含水率对粮仓设计参数的影响,通过三轴试验研究了含水率对小麦粮堆非线性强度、临界状态和模量等的影响规律。结果表明:不同含水率下小麦粮堆的峰值强度和残余强度符合非线性强度指标的Mohr-Coulomb强度准则;参考压力(100kPa)下峰值内摩擦角和残余内摩擦角随着含水率的增大呈线性增大,含水率每增加1%,峰值内摩擦角和残余内摩擦角分别增大0.22°和0.30°。小麦粮堆的临界状态特性符合剑桥弹塑性理论,偏应力随着平均法向应力的增大呈线性增大;峰值应力比和临界状态应力比随着含水率的增大呈线性增大;含水率每增加1%时,峰值应力比和临界状态应力比分别增大0.012和0.014。不同含水率下初始模量、割线模量与围压间可采用幂函数模型表示;参考压力下初始模量和割线模量均随着含水率的增大呈线性降低;含水率每增加1%,初始模量和割线模量分别降低0.98和0.25 MPa。  相似文献   

11.
采用多点随机抽样法对高大平房仓储粮品质变化与储粮环境的关系进行了研究。结果表明,温度和粮食水分是决定粮食储藏状况的主导因素,低水分储粮和低温储粮对提高储粮稳定性具有重要作用;仓内湿度与粮食陈化之间没有明显的相关关系,不是影响粮食品质的直接因素;另外,害虫为害对粮食品质的影响也不可忽视。  相似文献   

12.
一种智能化粮情自动检测系统   总被引:3,自引:1,他引:3  
粮食的安全储藏是关系到国计民生的战略大事,储粮参数的自动检测具有重要的社会意义和经济价值。为了自动检测储粮参数,提出了一种基于CAN总线的集温度、湿度、水分检测为一体的多传感器智能化粮情检测系统,它能够实时检测粮食温度、水分及仓内外空气温度、湿度等储粮基本参数,准确提供储粮状态信息,预报粮情变化趋势。实际运行结果表明,系统具有信号传输距离远、可靠性好、智能化程度高等特点。  相似文献   

13.
玉米果穗在自然通风过程中水分迁移的动力学分析   总被引:4,自引:3,他引:1  
为了探索玉米果穗水分迁移规律,针对低温自然通风降水过程中玉米果穗的绝对水势、扩散系数及活化能的变化规律及影响因素进行了分析。结果表明:在低温条件下,玉米果穗通过仓储自然通风干燥至安全水分需要3到4个月的时间;随着环境温度的上升,空气与玉米的绝对水势均逐渐增大,玉米的绝对水势大于空气绝对水势,玉米水分下降,当两者间的绝对水势差值逐渐缩小时,仓内粮食的水分子没有足够能量从表面扩散到周围的空气中,玉米水分逐渐趋于平衡;各仓水势梯度明显,水分从西向东迁移,仓内迎风面水势值小,水分下降快,粮堆厚度对绝对水势有影响;玉米果穗的水分扩散系数范围为2.563×10-12~5.34×10-12 m2/s,粮食与空气的绝对水势差及粮堆厚度对水分扩散系数均有影响;Arrhenius方程可以描述玉米果穗水分扩散系数与温度的关系,玉米果穗水分扩散的平均活化能为35.76 k J/mol。研究结果将为粮食储藏与干燥过程的动力学研究提供理论依据。  相似文献   

14.
不同种植密度下的棉田小气候特点   总被引:2,自引:0,他引:2  
为研究种植密度对田间小气候的影响,2008年在南疆阿克苏试验点,通过大田试验对不同种植密度下(9.0、13.5、18、22.5、27.0万株/hm2)棉田群体冠层不同层次的温度、空气相对湿度、土壤水分等要素进行了测定。结果表明:在所设置的密度范围内,棉花的株高在55~75cm,并且随密度增加株高降低;而茎粗、株宽、叶宽、果枝数等也有类似趋势。花期和吐絮期,棉花宽窄行的冠层空气温度均较高,最高均超过了31℃,并随当日时间先升后降,窄行温度高于宽行,冠层40cm处高于20cm处。相对湿度符合开口向上抛物线模型,花期较高且变化较小,中午时段最低只有40%,比见絮期高10个百分点以上;各处理以中间密度的相对湿度最为稳定,变化最小。土壤水分方面,密度小的处理地表蒸发严重,密度大的叶片蒸腾较多,因此,密度适中的处理土壤水分保持较好,变化范围较小。土壤15cm处地温,前期密度大的处理地温较高,中期受叶片遮荫影响而下降,但后期高密度处理温度又会升高,不过处理间差异不大,最高相差不过1℃。  相似文献   

15.
为了给秸秆含水率的检测提供廉价、便捷的检测仪,该文基于交流阻抗法设计了以单片机为控制器,能够检测阻抗、温度和压力的小麦秸秆含水率检测仪。建立了阻抗与小麦秸秆的湿基含水率(10.4%~19.7%)、温度(5~40℃)和容积密度(75.3~101.3 kg/m3)的三元三次关系模型,分析了各因素对模型影响的显著性,指出容积密度对模型影响不显著。进而建立了阻抗与湿基含水率和温度的二元三次模型;验证了模型的可靠性以及基于阻抗和温度预测秸秆含水率的精度。与烘干法相比,该文所设计的小麦秸秆含水率检测仪对于含水率10%~20%,温度在5~40℃的小麦秸秆含水率的绝对测量误差为-2.0%~0.9%,当单片机的晶振频率为11.0592 MHz时,检测响应时间小于1.5 s。该研究为小麦秸秆含水率的快速、现场检测提供了一种装置。  相似文献   

16.
黄淮冬麦区晚霜冻易发时段冠层内最低气温分布及估算   总被引:1,自引:0,他引:1  
利用2016年和2017年3月中旬?4月下旬两次典型低温过程中,冬小麦田间不同高度逐小时气象观测数据,分析晚霜冻易发时段冬小麦冠层内最低气温出现高度及其变化规律,构建基于150cm高度处气象因子和地表0cm温度的冠层内最低气温估算模型。结果表明:(1)与150cm高度相比,两次典型低温过程中0℃以下气温在冠层高度附近出现时间更早,持续时间更长且温度更低;(2)最低气温总是出现在4/5冠层高度附近,并在2:00?6:00时段,尤以5:00左右发生频率最高;(3)冠层内最低气温与150cm高度处相对湿度、风速的相关性通过了0.01水平的显著性检验,与不同高度气温、不同土壤深度地温的相关性也通过了0.001水平的显著性检验,与地温的相关性随着土壤深度的增加而逐渐降低;(4)冠层内最低气温与150cm高度处气温、风速、相对湿度,以及0cm地温的偏相关系数大小排序表现为,气温>风速>地温>相对湿度;利用以上因子构建基于多元线性回归函数的冠层内最低气温估测模型,其估测值与实测值拟合结果的决定系数达到0.967,均方根误差为0.915。说明基于气象台站常规观测数据构建冠层内最低气温估测模型具备一定可行性,可为冬小麦晚霜冻害的监测预报提供数据支持。  相似文献   

17.
砾石覆盖对土壤水热过程及旱作小麦玉米产量的影响   总被引:3,自引:1,他引:2  
为了揭示砾石覆盖对农田土壤水热变化及作物产量形成的影响,2013—2015年采用小区试验法研究冬小麦-夏玉米轮作条件下土壤水分变化、温度效应以及作物生长和产量之间的相互作用关系。田间试验设置无覆盖(CK)、25%砾石覆盖(GM1)、50%砾石覆盖(GM2)、75%砾石覆盖(GM3)和100%砾石覆盖(GM4)5个处理。结果表明:砾石覆盖度与土壤水分呈显著正相关,100%砾石覆盖处理土壤贮水量最高;干旱胁迫条件下砾石覆盖度越高土壤的保水性越好,降雨条件下砾石覆盖度越高土壤截留雨水的能力越大。砾石覆盖具有明显的增温效应,4个砾石覆盖处理的土壤平均温度大于CK处理,GM4处理土壤平均温度最大;砾石覆盖处理可以认为是一种有效的温度调节方式,具体表现在低温(-5~0℃)条件下GM4处理较CK处理土壤温度增加5℃,高温(40~45℃)条件下GM4处理较CK处理土壤温度降低3.7℃;在寒冷气候和水分亏缺的情况下4个砾石覆盖处理增温能力均大于对照。此外,夏玉米叶面积指数随着砾石覆盖度增加而增大。100%砾石覆盖处理的2季冬小麦和夏玉米平均产量较对照处理分别增加了58.55%和22.50%。可见,砾石覆盖技术可以有效保持土壤水分、增加土壤温度、促进作物生长和提高产量,是干旱半干旱地区应对水分胁迫和气候变化、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号