首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   

2.
The Guinea yams, Dioscorea cayenensis Lam. and D. rotundata Poir. (D. cayenensisD. rotundata complex), represent a highly important crop, widely distributed in the humid and semi-humid tropics. The ploidy levels of 170 accessions of the core set of Guinea yams from West African countries was determined using flow cytometry with propidium iodide staining. One hundred and eight of the genotypes were found to be tetraploid, 47 were hexaploid and five were octoploid. One mixoploid individual containing tetraploid and hexaploid nuclei was also detected. A deeper analysis considering each separate taxon revealed that while for D. rotundata the majority of individuals were tetraploid, for D. cayenensis this ploidy level was not detected in any of the accessions. Also, no association between ploidy level and place of cultivation was found for the evaluated germplasm. The obtained data is highly valuable for breeding programs of Guinea yam, especially for the optimization of future hybridization experiments directed to the genetic improvement of this economically important crop.  相似文献   

3.
Genetic diversity analysis within a species is vital for understanding evolutionary processes at the population and genomic levels. We report a detailed study of molecular diversity, polymorphism and linkage disequilibrium in three groups of rice (Oryza) germplasm accessions based on 176 SSR markers. The first group included 65 rice (O. sativa L.) accessions introduced from seven countries, including five regions of China. The second group included 58 US rice varieties released in the past 25 years. The third group consisted of 54 accessions of rice wild relatives represented by ten different species. The number of alleles per SSR marker ranged from 4 to 32 with a mean of 16 alleles and the polymorphism information content values ranged from 0.43 to 0.91 with a mean of 0.70. The variation in SSR alleles was a significant contribution to the genetic discrimination of the 177 accessions within the three Oryza groups. Analysis of molecular variance identified deviation from Hardy–Weinberg equilibrium. Principal coordinates analysis clearly separated the accessions into their respective three groups. Neighbor-joining phylogenetic cluster reflects the ordination of each accession. Linkage disequilibrium (D′) averaged 0.75 in wild Oryza spp., and about 0.5 in both US and international O. sativa accessions. Our results showed that LD among adjacent loci in both O. sativa and Oryza spp. accessions is strong enough to be detecting marker-trait association via genome-wide scans.  相似文献   

4.
A series of PCR methods were used to detect S-RNase alleles and SFB alleles and to determine S-genotypes in 25 accessions of myrobalan (Prunus cerasifera L.). Firstly, primers flanking the polymorphic second intron were used to identify S-RNases in agarose gels. These primers amplified one or two bands per accession in 25 accessions. Then consensus primers were designed for amplifying the polymorphic first intron, unique to Prunus S-RNases, for automated fluorescent detection. Each accession produced one or two peaks. New primers were then developed to amplify the intron in the SFB gene, for detection by fluorescence. Cross-referencing PCR bands and peaks indicated 15 S-alleles were present in the 25 accessions. Cloning, sequencing and comparison with published data indicated that the amplified products were S-RNase alleles. Sequence information was used to design primers specific for each S-RNase. Full and consistent S-genotypes were obtained by cross-comparing PCR data for 23 of the 25 accessions, and two accessions appeared to have a single allele. Pollen-tube microscopy indicated function of some but not all of the S-alleles sequenced.  相似文献   

5.
The Pi-z gene in rice confers resistance to a wide range of races of the rice blast fungus, Magnaporthe oryzae. The objective of this study was to characterize Pi-z in 111 rice germplasm accessions using DNA markers and pathogenicity assays. The existence of Pi-z in rice germplasm was detected by using four simple sequence repeat (SSR) markers (RM527, AP4791, AP5659-1, AP5659-5) closely linked to Pi-z, and was verified using pathogenicity assays with an avirulent strain (IE1k) and two virulent races (IB33 and IB49). Among 111 germplasm accessions evaluated, 73 were found to contain the Pi-z gene using both SSR markers and pathogenicity assays. The remaining 38 germplasm accessions were found to be inconsistent in their responses to the blast races IB33, IEIk and IB49 with expected SSR marker alleles, suggesting the presence of unexpected SSR alleles and additional R gene(s). These characterized germplasm can be used for genetic studies and marker-assisted breeding for improving blast resistance in rice.  相似文献   

6.
To fully exploit the diversity in African rice germplasm and to broaden the gene pool reliable information on the population genetic diversity and phenotypic characteristics is a prerequisite. In this paper, the population structure and genetic diversity of 42 cultivated African rice (Oryza spp.) accessions originating from West Africa (Benin, Mali and Nigeria, Liberia etc.) were investigated using 20 simple sequence repeats (SSR) and 77 amplified fragment length polymorphisms (AFLP). Additionally, field trials were set up to gain insight into phenotypic characteristics that differentiate the genetic populations among rice accessions. The analysis revealed considerably high polymorphisms for SSR markers (PIC mean?=?0.78) in the germplasm studied. A significant association was found between AFLP markers and geographic origin of rice accessions (R?=?0.72). Germplasm structure showed that Oryza sativa accessions were not totally isolated from Oryza glaberrima accessions. The results allowed identification of five O. glaberrima accessions which grouped together with O. sativa accessions, sharing common alleles of 18 loci out of the 20 SSR markers analyzed. Population structure analysis revealed existence of a gene flow between O. sativa and O. glaberrima rice accessions which can be used to combine several interesting traits in breeding programs. Further studies are needed to clarify the contributions of this gene flow to valuable traits such as abiotic and biotic stresses including disease resistance.  相似文献   

7.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

8.
The S-genotypes of 16 apricot (Prunus armeniaca L.) cultivars native to China were determined by the S-allele PCR approach and the results were confirmed by cross-pollination tests among these cultivars. Primer combination EM-PC2consFD + EM-PC3consR, based on the conserved regions C2 and C3 of Rosaceous S-RNase genes, was the most useful primer combination for identifying Chinese apricot S-alleles. Twelve S-RNase alleles were identified using this primer combination, and they were defined as follows: S 9 was 657 bp, S 10 was 266 bp, S 11 was 464 bp, S 12 was 360 bp, S 13 was 401 bp, S 14 was 492 bp, S 15 was 469 bp, S 16 was 481 bp, S 17 was 487 bp, S 18 was 1337 bp, S 19 was 546 bp and S 20 was 1934 bp. S 11S 20 were new S-RNase genes deposited in GenBank under accession numbers DQ868316, DQ870628-DQ870634, EF133689 and EF160078, respectively. Our findings contribute to a more efficient breeding program of Chinese apricot and further studies on the S-RNase genes.  相似文献   

9.
Zea mays ssp. mexicana, an annual wild relative of maize, has many desirable characteristics for maize improvement. To transfer alien genetic germplasm into maize background, F1 hybrids were generated by using Z. mays ssp. mexicana as the female parent and cultivated maize inbred line Ye515 as the male parent. Alien introgression lines, with a large range of genetic diversity, were produced by backcross and successive self-pollinations. A number of alien introgression lines with the predominant traits of cultivated maize were selected. Genomic in situ hybridization (GISH) proved that small chromosome segments of Z. mays ssp. mexicana had been integrated into the maize genome. Some outstanding alien introgression lines were evaluated in performance trials which showed 54.6% hybrids had grain yield greater than that of hybrid check Yedan12 which possessed 50% Ye515 parentage, and 17.1, 9.9% hybrids had grain yield competitive or greater than those of Nongda108 and Zheng958, which were elite commercial hybrids in China, respectively. The results indicated that some of the introgression lines had excellent agronomic traits and combining ability for maize cultivar, and demonstrated that Z. mays ssp. mexicana was a valuable source for maize breeding, and could be used to broaden and enrich the maize germplasm.  相似文献   

10.
Polish apple cvs: ‘Ligol’, ‘Odra’ and ‘Primula’ served for studies of self-incompatibility. Basing on available sequence data, a new set of primers upstream and downstream of the hypervariable (HV) region of apple S-RNases were designed. Using the RT-PCR method, cDNA was amplified on RNA isolated from styles. PCR products were cloned and sequenced. A new trans-generic S-RNase allele, designated as Skb (GenBank accession no. EU443101), was discovered in cvs ‘Odra’ and ‘Primula’. Nucleotide sequence alignment revealed that Skb-RNase shows 98% identity to SaucS19-RNase from Sorbus aucuparia and 97% identity to CmonS17-RNase from Crataegus monogyna. The occurrence of extensive intergeneric hybridization among extant Pyrinae is considered since the deduced amino acid sequence of Skb-RNase from M. × domestica showed higher similarity to CmonS17 from C. monogyna, SaucS19-RNase from S. aucuparia, St from Malus transitoria, S5-RNase and S3-RNase from Pyrus pyrifolia, and S40-RNase from P. ussuriensis than to S-alleles from Malus × domestica and all of them are grouped in the same cluster of phylogenetic tree. In respect to extremely high similarities between aforementioned S-RNases it could be possible that these alleles existed before the separation of Malus, Pyrus, Sorbus and Crataegus genera. Within Malus, the Skb-RNase from M. × domestica and St-RNase from M. transitoria show 100% identity of the HV region at the deduced amino acid level, suggesting that these S-RNases diverged more recently than the other Malus S-RNases. In ‘Ligol’, the agronomically most important cultivar in Poland, the S2 and S9 were identified.  相似文献   

11.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species suggests that they are not so distantly related as considered previously.  相似文献   

12.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

13.
Intergeneric hybrid plants between Colchicaceous ornamental plants, Sandersonia aurantiaca and Gloriosa rothschildiana, have successfully been produced via ovule culture. After 5 days of reciprocal cross-pollination, a few pollen tubes were observed in the ovary. Although seeds were obtained in both reciprocal cross-combinations, they did not germinate under ex vitro conditions. Ovules with placental tissues isolated 14 days after cross-pollination of S. aurantiaca × G. rothschildiana were cultured on a medium containing 0.01 mg l–1 each of -naphthaleneacetic acid (NAA) and 6-benzyladenine (BA), on which 41.5% of ovules swollen and produced callus-like structures within 10 weeks. When such swollen ovules were transferred to a medium containing 0.1 mg l–1 each of NAA and BA, 7.5% of the initially cultured ovules produced rhizome-like structures within 6 weeks. Among the rhizome-like structures, those derived from two independent ovules (3.7% of the initially cultured ovules) produced multiple shoots following transfer to a medium containing 0.25 mg l–1 NAA and 2.5 mg l–1 BA. Multiple shoot-derived plantlets were established on a plant growth regulator-free medium, and they were successfully transplanted to pots. Early verification of their hybridity was accomplished by flow cytometry (FCM) analysis, chromosome observation and rDNA analysis.  相似文献   

14.
Grain hardness plays an important role in determining both milling performance and quality of the end-use products produced from common or bread wheat. The objective of this study was to characterize allelic variations at the Pina and Pinb loci in Xinjiang wheat germplasm for further understanding the mechanisms involved in endosperm texture formation, and the status of grain texture in Chinese bread wheat. A total of 291 wheat cultivars, including 56 landraces, and 95 introduced and 140 locally improved cultivars, grown in Xinjiang, were used for SKCS measurement and molecular characterization. Among the harvested grain samples, 185 (63.6%), 40 (13.7%), and 66 (22.7%) were classified as hard, mixed and soft, respectively. Eight different genotypes for the Pina and Pinb loci were identified, including seven previously reported genotypes, viz., Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1p, Pina-D1a/Pinb-D1q, Pina-D1a/Pinb-D1aa, Pina-D1a/Pinb-D1ab, and a novel Pinb allele, Pinb-D1ac. This new allele, detected in Kashibaipi (local landrace) and Red Star (from Russia) has a double mutation at the 257th (G to A substitution) and 382nd (C to T substitution) nucleotide positions of the coding region. Pina-D1b, Pinb-D1b, and Pinb-D1p were the most common alleles in Xinjiang wheat germplasm, with frequencies of 14.3%, 38.1% and 28.6% in hard textured landraces, 25.5%, 56.9% and 11.8% in hard introduced cultivars, and 24.8%, 47.8% and 26.5% in hard locally improved cultivars, respectively. The restriction enzymes ApaI, SapI, BstXI and SfaNI were used to identify Pinb-D1ab or Pinb-D1ac, Pinb-D1b, Pinb-D1e and Pinb-Dg, respectively, by digesting PCR products of the Pinb gene. The unique grain hardness distribution in Xinjiang bread wheat, as well as the CAPs markers for identification of the Pinb alleles provided useful information for breeding wheat cultivars with optimum grain textures. Liang Wang and Genying Li—contributed equally to this work.  相似文献   

15.
Amaresh Chandra 《Euphytica》2009,169(3):363-374
The genus Medicago encompasses many important forage species for both temperate and tropical regions. M. sativa L., commonly known as lucerne, is one of the most important forage species grown worldwide, but its production suffers seriously from weevil (Hypera postica Gyll.) infestation. The aim of this work was to identify species/accessions with tolerance to weevil and their molecular analysis using simple sequence repeat (SSR) markers. After screening 197 global germplasm encompassing 50 Medicago species for weevil tolerance, 22 lines representing 13 species were identified where leaf damage was ≤15% (P ≤ 0.05). In total, 37 accessions of the 22 lines, five Indian lucerne cultivars with leaf damage ≥75% and 10 accessions of the 13 Medicago species with low to high infestation (>25%) were molecularly assessed using 11 SSR markers (5 newly developed) to delineate closest to lucerne lines for breeding. In total, 33 bands were scored. The SAHN clustering using UPGM algorithm resulted into two main clusters supported with high boot strap values and with genetic similarity ranging from 0.33 to 0.96. Two accessions of M. tenoreana were observed closest to Indian lucerne cultivars. The rich variability revealed can be used as potential resource for transferring genes across species. Although the inter-specific hybridization is difficult preposition in genus Medicago largely due to post fertilization barrier, the identified species/accessions can be utilized on priority in breeding programs especially employing biotechnological tools like culturing of fertilized pods, ovule-embryo culture and electroporation.  相似文献   

16.
Eighty-two varieties of rice from different regions in Thailand were selected to explore the Waxy (Wx)gene diversity and indica-japonica differentiation of chloroplast DNA. A comparison of the 5 splice site in the first intron was made between glutinous and nonglutinous rice. It revealed that non-glutinous with low-amylose content and glutinous rice were characterized as the Wxb allele based on the G-to-T base substitution, whereas non-glutinous rice with intermediate and high amylose carried the Wxa allele. Four Wx microsatellite alleles, (CT)n repeat, (n = 16,17,18 and 19) were found in glutinous rice. In contrast, non-glutinous rice showed five Wx microsatellite alleles (n = 11, 16, 17, 18 and 19). The (CT)17 allele was prominent allele in Thai population, while the (CT)11 allele was found only in intermediate and high amylose rice varieties from southern Thailand. Almost all of upland rice grown by various ethnic groups in northern Thailand were characterized as japonica type based on their having the PstI-12 fragment in their cpDNA, whereas most of rainfed lowland varieties from other regions of Thailand were indica. This exploration of DNA-based genetic markers is important, as it enhances our ability to describe and manipulate sources of genetic variation for rice breeding programs.  相似文献   

17.
Isatis tinctoria L. was cultivated until the 19th century to produce indigo, a natural blue pigment used principally for dyestuffs. The current search for alternative crops and interest in natural products has led to reconsidering I. tinctoria as a crop to be grown in marginal areas to produce natural indigo. To reintroduce I. tinctoria into cultivation, its behaviour under different climatic conditions as well as its morpho-physiological and genetic diversity must be assessed in order to evaluate the possibilities of future breeding work. To do this, a Eurasian collection of 15 accessions was studied in a 2-year experiment. The study was carried out in four locations in order to assess plant performance at altitudes ranging from 380 to 1,700 m a.s.l. A second experiment evaluated the morpho-physiological diversity of several traits (some related to agronomic performances) of the collection. In a third experiment the genetic traits of the collection were characterised by using eight AFLP and eight SAMPL markers. The species showed a wide adaptability to different mountainous conditions and the populations showed high morphologic and genetic variability and differed according to their origins. Both morpho-physiological and molecular characterisation allowed the accessions to be distinguished into groups of European and Asian origin. Future breeding work is recommended because some accessions have good agronomic potential.
Valeria NegriEmail:
  相似文献   

18.
Pre-harvest sprouting (PHS) reduces the quality of wheat (Triticum aestivum L.) and the economic value of the grain. The objective of this study was to evaluate the diversity of the Viviparous-1B (Vp-1B) gene associated with PHS tolerance in a collection of 490 widely grown winter wheat varieties from central and northern Europe. Four alleles of Vp-1B were found in the wheat varieties tested, three of which (Vp-1Ba, Vp-1Bb and Vp-1Bc) had previously been identified in Chinese wheat varieties. The fourth was a new allele which had a 25-bp of deletion in the third intron region compared with the nucleotide sequence of Vp-1Ba, and was designated as Vp-1Bd. The frequencies of different alleles in this set of European wheat germplasm were: Vp-1Ba (54%) > Vp-1Bc (21%) > Vp-1Bd (20%) > Vp-1Ba + c (4%) > Vp-1Bb (1%), with Vp-1Bb being present only in two French varieties, ‘Altria’ and ‘Recital’. In addition, the frequencies of the alleles differed in varieties from different European countries. For example, Vp-1Ba had the highest frequency (76%) in varieties included in the UK National List (NL), but was least frequent in the Recommended List (RL) of Sweden (19%). Similarly, Vp-1Bc was present with the highest frequency (58%) in wheat varieties from Sweden, and the lowest in UK NL varieties (8%) while Vp-1Bd had the highest frequency of 32% in German varieties, and the lowest in Sweden varieties with only 8%. The Vp-1Ba allele was present in over half of the UK wheat varieties tested but the frequency was lower in RL varieties than in NL ones. Furthermore, heterogeneities were found between Vp-1Ba and Vp-1Bc in the varieties from Sweden, Netherlands, Germany and UK.  相似文献   

19.
Screening for resistance to powdery mildew of Solanum melongena and wild related species was made in the field under natural infection conditions. A total of 172 accessions originating from several geographical parts of the world were tested. Single plant selection for resistance was carried out and open-pollination was used. Most S. melongena accessions were susceptible or highly susceptible to the disease. By S0 to S3 selection, an increase in the overall powdery mildew resistance level of S. melongena population was obtained and four S. melongena lines possessing a high level of resistance were obtained. Among the wild Solanum species, S. laciniatum and S. nigrum showed to be non-host plants of L. taurica. S. quinquangolare showed no symptoms of powdery mildew, S. linnaeanum, S. aculeatissimum, S. aviculare, S. pseudocapsicum were highly resistant, S. spinosissimum was resistant, S. gilo, S. capsicoides were susceptible or highly susceptible, and plants of S. sisymbriifolium showed a widely variable disease reaction. Four S. melongena resistant lines were obtained: PAVEG 10187 S3, PAVEG 10196 S3, P.I. 230279 S3 and P.I. 419198 S3. These S. melongena lines together with the resistant wild species could be used for genetic studies, classical breeding programs and biotechnological applications.  相似文献   

20.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号