首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

2.
Growing chick‐pea in sustainable systems requires the use and development of more competitive genotypes which can complement the effects of reduced input weed control. A 2‐year study assessed the competitive ability of 13 genotypes grown in either the presence or absence of weeds, in a split‐plot design including the weeds in pure stands. Crop and weed density, phenology, relative biomass of crop (RBc) and weeds (RBw), crop yield characters, crop biometric traits in the absence of weeds, relative biomass total of mixtures (RBT) and crop competitive ability (Cb = ln RBc/RBw) were recorded. Lines C136, C120, C101 and C106, and cultivars Pascià, Visir and Sultano gave the best seed yield in the absence of weeds (1.8–2.0 t ha?1 DM). Weeds reduced yield by 75% and 83% in C136 and C133 and by 87–97% in the other genotypes. Weed biomass in mixture (mainly Chenopodium album) averaged 4.42 t ha?1 DM. Chick‐pea genotypes C136 and C133 were the most competitive, but weeds were more competitive than any of the chick‐peas. Cb was correlated directly to the height of first fertile pod (r2 = 0.84) and inversely to the insertion angle of primary branches to the vertical (r2 = 0.77). Intergenotypic variation for competitive ability could be exploited in integrated weed control using more competitive genotypes, or used in breeding programmes aimed to develop highly competitive cultivars on the basis of easily screenable characters.  相似文献   

3.
Diversity and weed community composition of mid-season plant stands and autumn seedbanks were examined in spring barley–red clover cropping systems that varied according to crop rotation, tillage and weed management. Weed plant and seed density data collected over 4 years were used in the calculation of species richness (number of species), evenness (Shannon's E) and diversity (Shannon's H′), and in multivariate analysis (canonical discriminant analysis) of weed communities. Weed diversity indices were low (H′ < 2.0) but sensitive to management practices. Evenness had intermediate values (E = 0.4–0.8), suggesting little evidence of truly dominant species, particularly in the seedbanks. The difference in the number of species between treatments was never large (approximately two to four species). Overall, diversity indices were highest in the low disturbance treatments, particularly those with minimum weed management. Factors affecting ordination were somewhat different from those affecting diversity. Tillage had little effect on weed diversity indices but had a more major role in determining weed community composition. Seedbanks in no-till and monoculture-chisel plough treatments appeared to have more distinctive species composition compared with other treatments. Weed species assembly in seedbanks showed little discrimination across treatments and over time, confirming the ability of seedbanks to buffer disturbances across a variety of cropping systems. The use of diversity indices revealed part of the complexity of weed communities associated with disturbance in cropping systems, whereas ordination singled out species–cropping systems associations, which may be more meaningful to weed management.  相似文献   

4.
Over the last two decades, the demand for organic products has grown rapidly in the world due to increased concern about side effects of pesticides on the environment and human health. Studies were conducted in organic lettuce (Lactuca sativa L.) from 2004 to 2005 at the Black Sea Agricultural Research Institute in Samsun, Turkey, to determine the suppressive effects of summer cover crops on weeds. The experiment was arranged in a randomized complete block design with four replications. Treatments consisted of grain sorghum [Sorghum bicolor (L.) Moench.], sudangrass [Sorghum vulgare Pers. var. sudanense (Piper) Hitchc.], hairy vetch (Vicia villosa Roth.), grain amaranth (Amaranthus cruentus L.), pea (Pisum sativum L.) and bare ground with no cover crop. Weed density and total weed dry biomass were assessed before and at 14, 28, and 56 days after incorporation (DAI) of the cover crops. The cover crops produced between 1.2 and 3 t ha−1 biomass and grain sorghum produced more dry matter than any other species in both years. After incorporation of the cover crops, hairy vetch and sorghum treatments showed fewer weed species, and lower weed density than the other cover crops in both years. Hairy vetch, grain sorghum, and sudangrass were the most effective cover crops and reduced total weed dry biomass by 90.3%, 87.4%, and 86.9% in 2004, and by 88%, 86.3%, and 85.2% in 2005, respectively. Cover crop residue suppressed many broadleaved weed species but failed to control grass weeds. Hairy vetch treatments produced the highest yield, followed by sudangrass and grain sorghum. Yields with grain amaranth and pea were similar to that of the control. These results indicate that hairy vetch, grain sorghum, and sudangrass can be used to suppress weeds in early season of organic lettuce production.  相似文献   

5.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

6.
A LUNDKVIST 《Weed Research》2009,49(4):409-416
To assess the effects of timing and frequency of weed harrowing on weed abundance and crop yield, different pre- and post-emergence weed harrowing sequences were applied to spring cereals and peas in field experiments performed during 2003 and 2004 in Sweden. Post-emergence harrowing was performed at crop growth stages 2–3 and 5–6 true leaves respectively. The best weed control was obtained by a combination of pre- and post-emergence harrowing, but these treatments also caused yield losses of 12–14% in spring cereals, while no yield losses were observed in peas. Pre-emergence weed harrowing treatments alone or combined with weed harrowing shortly after crop emergence proved to be most effective against the early emerging annual weed species Sinapis arvensis and Galeopsis spp. Post-emergence harrowing alone in peas had no effect on S. arvensis . The late emerging annual weed species Chenopodium album and Polygonum lapathifolium were most effectively controlled when pre-emergence weed harrowing was combined with one or two weed harrowing treatments after crop emergence.  相似文献   

7.
Agricultural intensification, besides increasing land productivity, also affects weed communities. We studied weed shifts in cropping sequences differing in the identity and number of crops grown. We also evaluated whether dissimilar weed communities in different cropping systems converge towards more similar communities, when the same sequence is cropped during 2 years. In three locations in the Rolling Pampa, Argentina, field experiments were conducted including five cropping systems in the first year (winter cereal/soyabean, field pea/soyabean, and field pea/maize double crops, and maize and soyabean as single crops), while the same sequence was grown in the following 2 years (wheat/soyabean double crop and maize). Changes in weed community composition and structure were analysed through multivariate analyses and frequency–species ranking plots. Weed communities differed first among sites, while weed shifts within each site were mainly associated with growing season and crop type. Differences among crop sequences were higher in the first year, mostly related to specific crop grown, rather than to the number of crops in the sequences. Differences were reduced when the same sequence was grown during two consecutive seasons. Frequency of highly common weeds was negatively associated with the number of days with high crop cover. Our findings contribute to understand weed shifts in consecutive growing seasons, which may help readapting crop sequences to reduce the occurrence of abundant weed species.  相似文献   

8.
Cover crops have been shown to be important integrated weed management tools. In addition to directly competing with weeds, cover crops can provide weed suppressive effects following incorporation through release of allelopathic compounds and/or changes to nutrient availability. Incorporation of a cover crop mixture may provide a synergistic or antagonistic effect on weed suppression by further altering nutrient dynamics. To investigate this phenomenon, we evaluated the suppressive effects following incorporation of annual ryegrass, buckwheat, brown mustard, and phacelia sown with and without field pea on germination and growth of several pernicious weed species. Further, we used the additive partitioning model to determine if pea synergistically improved biomass production and weed suppression of cover crops. Our results demonstrate that following incorporation, cover crop residues suppress weed germination and weed biomass production. According to the additive partitioning model, the addition of pea had an antagonistic effect on buckwheat and brown mustard biomass production and decreased buckwheat weed suppression by 8%. In contrast, the addition of field pea greatly enhanced biomass production of phacelia at a reduced seeding rate suggesting a positive biodiversity effect. Limited evidence was found for changes to nutrient availability following cover crop incorporation, however, a dose-dependent effect of cover crop residue on weed suppression suggests allelopathy and/or nutrient availability may have a role on weed seed germination success. Together, our results support the use of incorporated cover crop residues as an integrated weed management tool.  相似文献   

9.
Linear regression of dry weight of weeds against crop density, together with the use of diversity indices and principal component analysis were used to derive information about changes in the behaviour of annual weeds over the growing season and in response to a wide range of crop densities in vining peas Pisum sativum L. Using linear regression it was possible to quantify reductions in weed dry weights per unit increase in crop plant density The ‘weed losse’ factor was acceptably consistent between experiments. Indices examining richness and evenness showed that numbers of weed species declined with increasing crop density and as the season progressed, but although species evenness became less at successive sampling dates the presence of a pea crop, whatever its density, did not radically alter the composition of the weed flora. Principal component analysis demonstrated that although there was competition within the weed flora, the crop did not replace the dominant weed species on high density plots, but reduced growth of all weed species alike.  相似文献   

10.
Crop and density effects on weed beet growth and reproduction   总被引:1,自引:1,他引:1  
Weed beet populations growing in each crop of the arable rotation could be a relay for the gene flow from adjacent transgenic herbicide‐resistant sugarbeet. In this study, weed beet growth and reproduction were assessed under several conditions which could be found in the rotation: various weed beet densities (ranging from 1 to 120 plants m?2) and various crops (winter wheat, spring barley, spring pea, sugarbeet, maize, ryegrass). Measurements were carried out both on life‐cycle dynamics (bolting time, time to flowering onset, dynamics of flower opening) and on other quantitative data (survival rate, bolting rate and pollen, flower and seed production). Increasing weed beet density resulted in decreases in bolting rate and flower and seed production per plant. In cereals, weed beet establishment and reproduction were strongly reduced, compared with bare ground as a control situation. In pea, there was no effect on establishment, but the early harvest limited seed set. In the other crops, flower and seed production were reduced to a lesser extent. Parameters of the fitted equations on the bolting and flowering progress were modified by the weed beet density and by the crop. Our data may be used in a model predicting weed beet demographic evolution according to cropping system, and in assessing gene flow.  相似文献   

11.
High weed abundance in organic crops is thought to be a key factor contributing to the greater yield loss in organic as compared with conventional cropping systems. However, even with greater weed densities than conventional systems, some organic systems have yields comparable to conventional systems, suggesting that cropping systems might differ in yield loss due to weed competition. The diversity in soil nutrient resources due to diversity in crop rotations and variable inputs might enhance crop tolerance to weed competition. We assessed the long‐term effects of contrasting levels of crop rotations (low, medium and high diversity) on weed density, weed biomass and wheat yield loss in organic and no‐till conventional cropping systems using a microplot study within a long‐term cropping systems trial at Scott, Saskatchewan, Canada. Weed density and biomass were found to be four times higher in the organic systems than in the conventional systems. Under standard weed management practices, organic had 44% lower yield than the conventional system. Lower yields in organic, even without weed competition, suggest that the lower yields are due to low soil productivity rather than weed competition. No differences in yield loss were observed among the organic and conventional systems or among the diverse crop rotations. We conclude that the organic management practices and/or increased crop rotation diversity did not enhance yield or reduce yield loss due to weed competition, due to the factors associated with lower soil fertility.  相似文献   

12.
BACKGROUND: Lolium rigidum Gaud. is one of the most common weed species in winter cereals in north‐eastern Spain, with populations that have evolved resistance to herbicides becoming more widespread since the mid‐1990s. Nine trials on commercial fields with herbicide‐resistant L. rigidum were conducted during the cropping seasons 2001–2002 to 2003–2004, testing the efficacy of 20 herbicides and mixtures pre‐ and post‐emergence and as sequential applications. Weed populations chosen had different resistance patterns to chlortoluron, chlorsulfuron, diclofop‐methyl and tralkoxydim, representative of the resistance problems faced by farmers. RESULTS: In pre‐emergence, prosulfocarb mixed with trifluralin, chlortoluron or triasulfuron was effective on six populations. In post‐emergence, iodosulfuron alone or mixed with mesosulfuron gave the best results but did not control three resistant populations. At Ferran 1, none of the herbicide combinations reached 90% efficacy. CONCLUSIONS: The diverse efficacy patterns of the different populations demonstrate the need for detailed knowledge of the populations before using herbicides. Moreover, the unexpected insufficient efficacy of the new herbicide iodosulfuron prior to its field use shows the need to combine herbicides with other non‐chemical weed control methods to control resistant L. rigidum in north‐eastern Spain. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Weed control is a major concern for organic farmers around the world and non-chemical weed control methods are now the subject of many investigations. Field studies were conducted in tomato (Solanum lycopersicum L.) from 2004 to 2006 at the Black Sea Agricultural Research Institute experiment field to determine the weed suppressive effects of winter cover crops. Treatments consisted of ryegrass (Lolium multiflorum L.), oat (Avena sativa L.), rye (Secale cereale L.), wheat (Triticum aestivum L.), gelemen clover (Trifolium meneghinianum Clem.), Egyptian clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.), hairy vetch (Vicia villosa Roth.) and a control with no cover crop. Treatments were arranged in a randomized complete block design with four replications. To determine the weed suppressive effects of the cover crops, weed density and total weed dry biomass were assessed at 14, 28, and 56 days after termination (DAT) of the cover crops from all plots using a 50 × 50 cm quadrat placed randomly in each plot. After cover crop kill and incorporation into soil, tomato seedlings variety ‘H2274’ were transplanted. Broadleaved weed species were the most prominent species in both years. Total weed biomass measured just prior to cover crop incorporation into the soil was significantly lower in S. cereale plots than in the others. The number of weed species was lowest at 14 DAT and later increased at 28 and 56 DAT, and subsequently remained constant during harvest. This research indicates that cover crops such as L. multiflorum, S. cereale, V. sativa and V. villosa could be used in integrated weed management programs to manage some weeds in the early growth stages of organic tomato.  相似文献   

14.
It has been hypothesized that increased crop density and spatial uniformity can increase weed suppression and thereby play a role in weed management. Field experiments were performed over 2 years to investigate the effects of the density and spatial arrangement of spring wheat (Triticum aestivum) on weed biomass and wheat yield in weed-infested fields. We used three crop spatial patterns (normal rows, random and uniform) and three densities (204, 449 and 721 seeds m−2), plus a fourth density (1000 seeds m−2) in the random pattern. Increased crop density reduced weed biomass in all three patterns. Weed biomass was lower and crop biomass higher in wheat sown in the random and uniform patterns than in normal rows in both years. At 449 seeds m−2, weed biomass was 38% lower in the uniform and 27% lower in the random pattern than in rows. There was evidence of decreasing grain yield due to intraspecific competition only at 1000 seeds m−2. The results not only confirm that increasing density and increasing crop spatial uniformity increase the suppression of weeds, but also suggest that a very high degree of spatial uniformity may not be necessary to achieve a major increase in weed suppression by cereal crops. Rows represent a very high degree of spatial aggregation. Decreasing this aggregation increased weed suppression almost as much as sowing the crop in a highly uniform spatial pattern. While the random pattern produced as much crop biomass and suppressed weeds almost as well as the uniform pattern, the uniform pattern gave the highest yield.  相似文献   

15.
Conventional methods of weed management in vineyards rely primarily on herbicides and tillage. The desire to adopt alternatives to these methods is driven by environmental and economic reasons. Weed suppression and grape yield under mulched cover crop systems at two rainfed northern California vineyards were similar to, and at times exceeded, those under conventional tillage or herbicide management. Cover crop productivity was positively correlated with weed suppression and mulch decomposition rates and seemed to be determined primarily by location and then by cover crop type. The mulch from mowed cover crops averaged 603(± 94) gm−2 at the two sites. Weed suppression was linked to light interception by the mulch cover for most weed species. Subterranean clover planted directly in the vine row significantly reduced weed cover where it established. The increased dominance of the perennial Convolvulus arvensis and reduction of certain annual species was indicative of species compositional changes in all treatments. Profits under the cover cropping systems exceeded those under conventional tillage and herbicide systems by €  794 ha−1 averaged over the duration of the experiment at both locations.  相似文献   

16.
Weed flora were surveyed during 2000 and 2001 in 10 established olive groves that were located in the area of Vlora, in south‐western Albania. The effectiveness of six weed management treatments (soil tillage, straw mulch, cover cropping [a mixture of rye with peas], and grazing, as well as glyphosate and diuron application) on the weed flora, olive yield, and fruit quality also were investigated in two locations during 2000, 2001, and 2002. More than 80 weed species were recorded, representing a total of 14 families, in which the families Poaceae, Fabaceae, Asteraceae, Ranunculaceae, and Rosaceae predominated. The glyphosate application provided the highest and most consistent level of weed control, whereas diuron achieved sufficient weed control. The straw mulch provided acceptable weed control but the cover crop and the grazing did not sufficiently control the weeds. The highest fruit and oil yields were produced by the trees treated with the straw mulch as a result of the highest mean fruit weight in each year, followed by the soil tillage treatment. However, the olive trees in the plots treated with glyphosate or grazing provided lower or equal, respectively, fruit and oil yields than did those in the untreated plots (control). The results indicated that certain non‐chemical weed control methods, such as straw mulch, can be implemented successfully in established olive groves, providing satisfactory control of weeds and promoting the highest fruit and oil yields.  相似文献   

17.
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences (continuous cotton, cotton‐sugar beet rotation, and continuous tobacco) and herbicide treatments with inter‐row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus‐galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus) and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus‐galli, S. nigrum, and johnsongrass (Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter‐row hand hoeing, whereas E. crus‐galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter‐row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre‐sowing and pre‐emergence herbicide treatments in cotton and pre‐transplant in tobacco integrated with inter‐row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter‐row cultivation; tools of great importance in integrated weed management systems.  相似文献   

18.
A screening programme for crop variety competitiveness would ideally be based on only a few, non-destructive measurements of key growth traits. In this study we measured the weed suppressive ability of 79 varieties of spring barley in two ways: (i) directly, by weed coverage assessments under weedy conditions at three Danish locations in 2002–2004 and (ii) indirectly, by non-destructive measurements of varietal growth traits under weed-free conditions in 17 other experiments in Denmark in 2001–2003. Based on just four varietal growth traits (reflectance, leaf area index, leaf angle and culm length), we successfully developed a method for indexing the weed suppressive ability of spring barley varieties. The suppressive index ranged from 12% in Lux and 55% in Modena in proportion to the 90% quantile coverage of all varieties. The index was validated against independent data from two locations in 2005 with 14 and 24 varieties and was found valuable for future use in regular screening programmes.  相似文献   

19.
Functional diversity of cover crop mixtures is thought to improve biomass production and weed suppression, two key agroecosystem services in organic systems. To test this hypothesis, we selected eight cover crop species belonging to four functional groups: (i) vining growing large-seeded legumes (field pea, common vetch), (ii) erect growing small-seeded legumes (crimson clover, squarrosum clover), (iii) grasses (barley, oats) and (iv) Brassicaceae (radish, black mustard). Nine cover crop mixtures were designed to create a gradient of diversity in terms of number of species and number of functional groups. A control treatment and all monocrops were included in the trial. Regarding cover crop biomass, mixtures outyielded monocrops by an average of 37%. Both functional identity and composition (i.e. trait complementarity) influenced biomass production and weed suppression provided by cover crops. Regression analysis showed that increase in both species diversity and functional diversity in cover crop mixtures improved the provision of agroecosystem services. Results from this study show that complementarity of species functional traits in cover crop mixtures can be used as a strategy to ensure high biomass production and good weed suppression in changing agroecosystems.  相似文献   

20.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号