首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.  相似文献   

2.
The persistence of two herbicides, simazine and terbuthylazine, and appearance of their principal dealkylated chloro-s-triazine metabolites have been studied in agricultural soil after the addition of urban sewage sludge as organic amendment. Both herbicides and metabolites were monitored during long-term laboratory incubation (140 days) and analyzed by gas chromatography with a nitrogen-phosphorus detector (GC-NPD). Residues were confirmed by gas chromatography with a mass selective detector (GC-MSD). A sonication microextraction method was used to extract the compounds. The organic amendments used were urban sewage sludge and the humic fraction of this sludge, to increase the organic matter content of the soil from 1% to 2%. For both compounds, simazine and terbuthylazine, the degradation began earlier in the amended soils. Simazine showed a higher dissipation rate than terbuthylazine, the percentage of the former at the end of the experiment being lower than 2% in all cases, while for terbuthylazine the corresponding percentage ranged from 5% to 46%. Organic amendment, mainly its humic fraction, caused a certain stabilization of terbuthylazine in the soil, but did not greatly influence the residual amount of simazine at the end of the experiment. The periodic aeration of the soil caused a greater degradation in the case of terbuthylazine. Only mono-deethylsimazine and deethylterbuthylazine were isolated from the soil during the time the experiment lasted, while the di-deethylated metabolite of simazine was not found.  相似文献   

3.
In recent years, the use of new mulches for soil water conservation in arid regions has been introduced as an alternative to conventional (plastic) mulches. However, systematic studies concerning the effects of different organic [pistachio shell mulch (PSM), wheat straw mulch, de‐oiled olive pomace mulch (DOM) or wood chips mulch], chemical [superabsorbent polymer (HM) or organic‐based emulsion polymer (PEM)] and mineral [gravel mulch (GM)] covers on soil and water conservation are scarce. Therefore, two experiments were carried out. Experiment 1 was aimed at evaluating the effects of mulches of different composition on soil surface evaporation, whereas in experiment 2 we investigated the effects of this decrease in soil evaporation due to different mulch materials on some olive tree physiological responses to soil drying. We analysed stem water potential, transpiration rate, stomatal conductance, leaf density and maximum efficiency of photosystem II photochemistry (Fv/Fm) of 2‐yr‐old plants of ‘Konservalia’ olive, grown in pots in open field. The results showed that different mulch materials had different efficiency on soil water conservation and DOM and pistachio shell mulch PSM – as new mulch materials – seems more favourable for conserving soil water. Water stress caused reductions in all parameters measured and increment in leaf density compared with unstressed treatment. Olive plants grown using different soil mulch presented higher values of stem water potential, transpiration rate, stomatal conductance and Fv/Fm ratio compared to control plants. Although all the mulch treatments improved the water content of soil, DOM and PSM were found to be superior in maintaining optimum soil water content for olive use.  相似文献   

4.
This study examined the interactions between the inoculation with three arbuscular mycorrhizal fungi, namely, Glomus intraradices, Glomus deserticola and Glomus mosseae, and the addition of a liquid organic amendment at different rates (0, 50, 100 or 300 mg C of liquid amendment per kilogram soil) obtained by alkaline extraction of composted dry olive residue with respect to their effects on growth of Retama sphaerocarpa seedlings and on some microbiological and physical properties of soil. One year after planting, both mycorrhizal inoculation treatments and the addition of amendment had increased plant growth and dehydrogenase, urease and benzoyl argininamide hydrolysing activities. The inoculation with G. mosseae increased plant growth to a greater extent than the addition of the amendment (about 35% greater than plants grown in the amended soil and about 79% greater than control plants) and both treatments produced similar increases in soil aggregate stability (about 31% higher than control soil). The organic amendment produced a very significant decrease in the levels of microbial biomass C and a strong increase in soil dehydrogenase and urease activities, which were proportional to the amendment rate. Only the combined treatment involving the addition of a medium dose of amendment (100 mg C kg−1 soil) and the mycorrhizal inoculation with G. intraradices or G. deserticola produced an additive effect on the plant growth with respect to the treatments applied individually (about 77% greater than plants grown in the amended soil and about 63% greater than inoculated plants).  相似文献   

5.
The objective of this experimental study was to determine the effect of agronomic practices usually implemented in olive groves (addition of olive mill waste and herbicides) on soil microbial communities and to test whether drought enhanced such effects. For that purpose, mesocosms containing soil cores from olive groves were incubated for 5 months under either of the three treatments: (i) addition of olive mill waste (OMW), (ii) addition of glyphosate‐based herbicide (Gly treatment) and (iii) both treatments. Half of the mesocosms were subjected or not (controls) to drying–rewetting cycles (D/Rw) for 1 month (1 D/Rw) or 3 months (3 D/Rw). In the controls, 2 months after the Gly treatment, higher lipase activities were observed compared with no practice treatment as well as a significant change in catabolic profiles of cultivable microbial communities. Three months later, lipase activities significantly decreased under the Gly treatment. Addition of OMW together with Gly treatment counteracted the negative effect of the herbicide on lipase activities. After three D/Rw cycles, Gly treatment modified catabolic profiles and induced a decrease in functional diversity. Overall, the combination of glyphosate‐based herbicide with OMW was a conservative practice that maintained soil functioning and led to a better response to D/Rw cycles.  相似文献   

6.

Purpose  

Terbuthylazine is one of the most common herbicides used to control weeds in olive groves. Application of two-phase olive mill waste (OW) to soils may play a fundamental role in the management of leaching losses of pesticides, especially in Mediterranean areas where soils are characterized by low organic matter levels. We evaluated the impact of OW amendments on the sorption–desorption, degradation, leaching, and persistence of the herbicide terbuthylazine in a representative olive grove soil from Portugal.  相似文献   

7.
 This paper reports the effect of the addition of the organic fraction of municipal solid waste at two different rates on the microbiological and biochemical properties of an arid soil after 8 years. The vegetation that appeared spontaneously just after the amendment was still present 8 years later. The organic matter fractions were higher in the amended soil than in the control soil. Amended soil showed higher values of microbial biomass C, soil basal respiration and dehydrogenase activity than control soil, which reached values near to those of the natural soils in the area. The organic amendment had a positive effect on the activity of enzymes related with C, N, P cycles, particularly when the amendment was at the highest dose. This effect could be also observed on the activity of extracted enzymes. The results indicated that the addition of urban waste could be a suitable technique with which to restore soil quality. Received: 3 July 1998  相似文献   

8.
Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.  相似文献   

9.
Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30% w/w) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.  相似文献   

10.
Diuron ( N '-[3,4-dichlorophenyl]- N,N -dimethylurea) is one of the most frequently used herbicides in olive groves in Spain and other Mediterranean countries. The main objective of this work was to investigate the effect of the dissolved organic carbon (DOC) from a commercial humic amendment, derived by composting the liquid waste of the olive-mill process (LF), and a solid residue from the olive oil production industry (AL) on the sorption and leaching behaviour of diuron in soil. For this purpose, a clay and a sandy soil were selected. Soil sorption coefficients of diuron increased with LF (32%) and AL (76%) amendment in the sandy soil, whereas sorption decreased in the clay soil upon amendment, especially in the case of the liquid LF (52%). The DOC from LF and AL is composed of very poorly humified molecules, which are strongly sorbed onto the clay soil and thus compete with diuron for the same sorption sites. Dialysis experiments revealed that diuron forms stable complexes with DOC from LF and AL. Leaching of diuron in columns of the sandy soil treated with the organic amendments caused earlier breakthrough and maximum concentration peaks at fewer pore volumes when compared with leaching with 0.01 m CaCl2. Competition between diuron and DOC molecules for sorption sites and diuron–DOC interactions can both account for the enhanced leaching of diuron.  相似文献   

11.
Unsuitable agricultural practices together with adverse environmental conditions have led to degradation of soil in many Mediterranean areas. One method for recovering degraded soils in semiarid regions, is to add organic matter in order to improve soil characteristics, thereby enhancing biogeochemical nutrient cycles. In this study, the effect of adding the organic fraction of urban wastes (both fresh and composted) on different carbon fractions and on microbiological and biochemical parameters (microbial biomass C, basal respiration and different enzymatic activities) of a degraded soil of SE Spain has been assessed in a 2 year experiment. Three months after the addition of the organic material, spontaneous plant growth occurred and the plant cover lasted until the end of the experiment. Organic soil amendment initially increased the levels of soil organic matter, microbial biomass, basal respiration and some enzyme activities related to the C and N cycles These values decreased but always remained higher than those of the unamended soil. The results indicate that the addition of urban organic waste is beneficial for recovering degraded soils, the microbial activity of which clearly increases with amendment. The incorporation of compost seemed to have a greater positive effect on the soil characteristics studied than the incorporation of fresh organic matter.  相似文献   

12.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

13.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

14.
It is well known that compost amendment can improve soil phosphorus (P) availability, but there are few studies comparing the effect of one compost type on soil P pools of soils which differ in properties. The aim of this glasshouse experiment was to determine the effect of compost (derived from garden waste) application on P pools in soils with different properties planted with wheat. Four soils from two sites were used, with a heavier and a lighter textured soil from each site. The compost was applied as a 2.5 cm thick layer on the soil surface and wheat plants were grown for 63 days. The treatments also included soil without compost and plants. All pots were regularly watered. The soils were sampled on day 0 in the unamended soils and on day 63 in soil without compost and with compost, and plants after removal of the compost layer. Without and with compost the concentrations of most P pools were higher in the two heavier textured soils (16% and 35% clay) than in the two lighter textured soils (8% and 13% clay). Principal component analysis (PCA) showed that the concentrations of most P pools were positively correlated with organic matter, clay, and silt content of the soils. Only the concentration of water-soluble P was positively correlated with sand content. Compost addition increased the concentration of microbial P, sodium bicarbonate (NaHCO3)-Pi, sodium hydroxide (NaOH)-Pi, hydrochloric acid (HCl)-P, and residual P in all soils, whereas the concentration of NaHCO3-Po was reduced and the concentration of NaOH-Po little affected by compost addition indicating that P was transferred from the compost layer with watering. Compared with the unamended soil on day 0, the concentrations of microbial P, NaHCO3-Pi, NaOH-Pi, HCl-P, and residual P on day 63 were higher, whereas the concentrations of the two organic pools (NaHCO3-Po and NaOH-Po) were lower. This suggests mineralization of organic P pools and formation of inorganic P as well as microbial P uptake. These changes occurred in the unamended and compost-amended soils with greater increases over time in the compost-amended soils. It can be concluded that the size of the P pools is predominately affected by soil texture. Compost amendment increases P availability and microbial P uptake but also leads to the formation of less labile P pools such as HCl-P and residual P which could serve as plant P sources in the long term.  相似文献   

15.
The influence of two organic amendments consisting of an urban waste compost (SUW) and a commercial amendment from olive mill wastes (OW) was assessed on the sorption properties and leaching of the ionizable herbicide imazaquin on four soils with different physicochemical characteristics. A loamy sand soil (CR), a loam soil (P44), a silt loam soil (AL), and a clay soil (TM), with low-medium organic matter contents, were chosen. Sorption-desorption experiments were performed on the original soils and on a mixture of these soils with the organic amendments at a rate of 6.25% (w/w). These mixtures were used just after preparation and after aging for 3 months. Imazaquin adsorption was higher on AL soil because of its high content of amorphous iron oxides, whereas it was related to the soils' organic matter (OM) contents on TM and CR soils and to acid pH on P44 soil. Addition of exogenous OM to soils caused a decrease in the adsorption of the herbicide with the only exception of CR soil, due to blocking of adsorptive surfaces and/or equilibrium pH rise. The extent of this decrease was dependent only on the nature of the added amendment on AL soil. The adsorbed amounts of imazaquin on aged organic fertilized soils were usually fairly close to that on original soils. Results of soil column experiments indicate that addition of exogenous organic matter cannot be considered as a regular practice for retarded movement of imazaquin.  相似文献   

16.
The effects of the addition of either crude or exhausted olive pomace at two rates (10 and 20 t ha(-)(1)) on soil and soil humic acid (HA) properties and durum wheat (Triticum turgidum L.) yield were investigated in open-field Mediterranean conditions. Soil amendment with olive pomaces produced a significant increase of total organic, total extractable, humified and nonhumified C forms, and available K contents. With respect to control soil HA, humic-like acids isolated from crude and exhausted olive pomaces were characterized by larger phenolic OH group contents, smaller carboxyl group contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. In general, application of olive pomaces to soil produced a number of modifications in soil HAs, including the increase of O and acidic functional group contents, C/N ratio, and aliphaticity and the decrease of C/H ratio and N and C contents. Wheat grain yield increased significantly as an effect of olive pomace amendment. In particular, the increases were related to kernel weight, kernel number per square meter, and soil organic matter content. Possibly, the enhanced amount of soil organic matter in olive-pomace-amended soils relieved wheat of drought stress from anthesis to maturity by promoting a good soil structure, thereby reducing water loss by evaporation.  相似文献   

17.
Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment.Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar(BC) and organic farm residues(FR) at different application rates of 0.0%(control), 4.0% and 8.0%(weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.  相似文献   

18.
Overused soil resources and the build-up of organic residues from industrial processes have resulted in increased risk of environmental contamination. Recycling of organic residues from industry by incorporation into agricultural soil, can provide valuable organic amendment as well as supply nutrients to crops. The effect of applying organic amendments to an agricultural sandy soil on the nitrogen nutrition of wheat (Triticum aestivum L.) and residual effects on the growth of a following maize crop (Zea mays, L.), were assessed under semi-controlled environmental conditions and were compared to nitrogen mineralization prediction obtained from an aerobic incubation. Six different organic residues (composted municipal solid waste, secondary pulp-mill sludge, hornmeal, poultry manure, the solid phase from pig slurry and composted pig manure) were added to a Cambic arenosol, incubated or used in pot experiments, to evaluate and try to predict the availability to crop plants of nitrogen released from these materials. Poultry manure was the most effective amendment in making nitrogen available and enhancing nitrogen uptake by wheat plants resulting in greater dry matter yield. The dried solid phase from pig slurry and hornmeal were also beneficial to wheat growth. There was a greater recovery of nitrogen (N), from organic materials studied, by a maize crop. Poultry manure was the residue that provided a greater residual effect on N supply to maize.  相似文献   

19.
The influence of tillage and nutrient amendment management on nutrient cycling processes in soil have substantial implications for environmentally sound practices regarding their use. The effects of 2 years of tillage and soil amendment regimes on the concentrations of soil organic matter variables (carbon (C), nitrogen (N) and phosphorus (P)) and C and N mineralization and P release were determined for a Dothan fine-sandy loam soil in southeastern Alabama. Tillage systems investigated were strip (or conservation) and conventional tillage with various soil nutrient amendments that included no amendment, mineral fertilizer, and poultry waste (broiler litter). Surface soil (0–10 cm depth increment) organic matter variables were determined for all tillage/amendment combinations. Carbon and N mineralization and P release were determined on surface soils for each field treatment combination in a long-term laboratory incubation. Soil organic P concentration was 60% greater in soils that had been conventionally tilled, as compared with strip-tilled, both prior to and following laboratory incubation. Carbon and N mineralization results reflected the effects of prior tillage amendment regime, where soils maintained under strip-till/broiler litter mineralized the greatest amount of C and N. Determination of relative N mineralization indicated that strip tillage had promoted a more readily mineralizable pool of N (6.1%) than with conventional till (4.2%); broiler litter amendments had a larger labile N fraction (6.7%) than was found in soils receiving either mineral fertilizer (4.1%) or no amendment (4.7%). Tillage also affected P release measured during the incubation study, where approximately 20% more inorganic P was released from strip-tilled soils than from those maintained under conventional tillage. Greater P release was observed for amended soils as compared with soils where no amendment was applied. Results from this study indicate that relatively short-term tillage and amendment management can significantly impact C, N, and P transformations and transfers within soil organic matter of a southeastern US soil.  相似文献   

20.
The objectives of the present study were to make a physical, physicochemical, and biological characterization of compost obtained from crop residues of horticultural plants grown in greenhouses and to assess the physical and chemical responses of a soil tested after the applications of this organic amendment. The compost showed a high percentage of inorganic material because the source of this compost includes not only crop residues but also soil; for this reason, it had high coarseness index (CI), electrical conductivity (EC), and pH. The application of the organic amendment to a soil with reduced bulk density (BD) increased the percentage of particles with large diameters, as well as increased the nutritional status and organic matter (OM). However, nitrogen and potassium levels in soil were low. Compost addition provoked an increase in soil EC, which restricts its use to salt-tolerant plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号