首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rice straw (RS) incorporated at the time of plowing in the previous cr–p season on CH4 emission from rice paddies was investigated in a pot experiment. Rice straw that incorporated just before transplanting of rice seedlings (June) into a paddy field was collected after the harvest (October) and at the beginning of the next cropping period (May). Methane emission rates from the rice-planted pots with the application of fresh RS, RS collected in October. and RS collected in Mayas well as the pots without RS application were measured using the chamber method. The composition of organic constituents in the three kinds of RS was estimated by the proximate analysis. The cumulative amount of CH4 emitted during the first 50–d period was lower in the order of the pots with RS collected in May, pots with RS collected in October, and pots with fresh RS. The cumulative amount of CH4 emitted throughout the rice growth period from the pots with fresh RS and with RS collected in October was significantly larger while that from the pots with RS collected in May did not differ statistically compared with the total CH4 emission from the pots without RS. These results suggested that there was an overall decrease in the amount of organic constituents in RS based on the large differences in T-C content and similar composition of organic constituents between the fresh RS and RS collected in May. Significant effect of RS continuously applied during the previous cropping period on the increase in CH4 emission was discussed.  相似文献   

2.
Abstract

Methane emission rates from plots with and without fertilizer and rice straw application, and growth of two rice varieties (an improved variety, IR74 or IR64, and a local variety, Krueng Aceh) in two Indonesian paddy fields (Inceptisol and Alfisol soils of volcanic ash origin) were measured every week throughout the growth period in the first and the second cropping seasons, 1994. The CH4 emission rates from the fields were similar between the two varieties. The effect of chemical fertilizer on the increase of the emissions was observed only in the Tabanan paddy field for the plots treated with rice straw. Application of rice straw increased the CH4 emission rates. The mean rates of CH4 emission were 1.37-2.13 mg CH4?C m?2 h?1 for the plots without rice straw and 2.14–3.62 mg CH4?C m?2 h?1 for the plots with rice straw application in the Alfisol plots, and 2.32–3.32 mg CH4 -C m-2 h-1 for the plots without rice straw and 4.18–6.35 mg CH4?C m?2 h?1 for the plots with rice straw application in the Inceptisol plots, respectively. Total amounts of CH4 emitted during the growth period were 3.9–6.8 and 2.6–3.3 g CH4?C m?2 for the Alfisol plots and 6.9–10.7 and 4.2–5.8 g CH4?C m?2 for the Inceptisol plots with and without rice straw application, respectively. These findings suggested that CH4 emission from tropical paddy fields with soils of volcanic ash origin is low.  相似文献   

3.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

4.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

5.
Methane emission from paddy fields in Taiwan   总被引:3,自引:0,他引:3  
 In order to investigate the effect of environmental conditions on CH4 emission from paddy fields in Taiwan, four locations, two cropping seasons and two irrigation systems were studied. CH4 emission was high at the active tillering and the booting stages in the first cropping season, whereas it was low at the transplanting and the ripening stages with an intermittent irrigation system. CH4 emission was high at the transplanting stage in the second cropping season, and decreased gradually during rice cultivation. Daily temperature and light intensity increased gradually during rice growth in the first cropping season (February–June), while it was reversed in the second cropping season (August–December). The seasonal CH4 emission from paddy fields ranged from 1.73 to 11.70 g m–2, and from 10.54 to 39.50 g m–2 in the first and second cropping seasons, respectively. The seasonal CH4 emission in the second cropping season was higher than that in the first cropping season in all test fields. The seasonal CH4 emission was 32.65 mg m–2 in the first cropping season of the National Taiwan University paddy field with continuous flooding, and it was 28.85 mg m–2 in the second cropping season. The annual CH4 emission ranged from 12.3 to 49.3 g m–2 with an intermittent irrigation system, and the value was 61.5 g m–2 with a continuous flooding treatment. The annual CH4 emission from paddy fields was estimated to be 0.034 Tg in 1997 from 364,212 ha of paddy fields with an intermittent irrigation system, which was less than the 0.241 Tg calculated by the IPCC method with a continuous flooding treatment Received: 23 February 2000  相似文献   

6.
Variations in CH4 emission from a Sumatra paddy field in which 8 popular modern varieties in Indonesia were grown were compared in the 1994/1995 rainy season. Total amounts of CH4 emitted during the period of rice growth were in the ranges of 32.6-41.7 and 51.3–64.6 g CH4 m-2 for the plots amended with chemical fertilizer only and those amended with both rice straw and chemical fertilizer, respectively. The mean CH4 emission rate was highest in the plot with the variety Bengawan solo and lowest in the plots with the varieties Atomita-4 and Way seputih among the plots which received chemical fertilizer, while highest in the plot with Way seputih and lowest in the plot with Bengawan solo among the plots amended with both rice straw and chemical fertilizer. The increase in the mean CH4 emission rates by rice straw application was higher for the plots planted with Way seputih (1.98 times) and Atomita-4 (1.77 times) than for the plots with Bengawan solo (1.23 times) and IR-64 (1.35 times). The plots with Walanai and Cisanggarung recorded intermediate mean emission rates and the increase in CH4 emission by rice straw application was also intermediate (1.57–1.64 times). It was noteworthy that Way seputih and Atomita-4 were derived from the variety Cisadane, Bengawan solo and IR-64 from the variety IR-54, and Walanai and Cisanggarung from the varieties IR-36 and Pelita 1-1, respectively.

The amounts of CH. emitted for 1 kg grain production ranged from 53 (Atomita-4) to 74 (Kapuas and Walanai) and from 89-93 (IR-64, Bengawan solo, and Atomita-4) to 121 (Kapuas) g CH4 kg-1 of grain for the plots amended with chemical fertilizer and those amended with rice straw and chemical fertilizer, respectively.  相似文献   

7.
Biochar application can reduce global warming via carbon (C) sequestration in soils. However, there are few studies investigating its effects on greenhouse gases in rice (Oryza sativa L.) paddy fields throughout the year. In this study, a year-round field experiment was performed in rice paddy fields to investigate the effects of biochar application on methane (CH4) and nitrous oxide (N2O) emissions and C budget. The study was conducted on three rice paddy fields in Ehime prefecture, Japan, for 2 years. Control (Co) and biochar (B) treatments, in which 2-cm size bamboo biochar (2 Mg ha?1) was applied, were set up in the first year. CH4 and N2O emissions and heterotrophic respiration (Rh) were measured using a closed-chamber method. In the fallow season, the mean N2O emission during the experimental period was significantly lower in B (67 g N ha?1) than Co (147 g N ha?1). However, the mean CH4 emission was slightly higher in B (2.3 kg C ha?1) than Co (1.2 kg C ha?1) in fallow season. The water-filled pore space increased more during the fallow season in B than Co. In B, soil was reduced more than in Co due to increasing soil moisture, which decreased N2O and increased CH4 emissions in the fallow season. In the rice-growing season, the mean N2O emission tended to be lower in B (?104 g N ha?1) than Co (?13 g N ha?1), while mean CH4 emission was similar between B (183 kg C ha?1) and Co (173 kg C ha?1). Due to the C release from applied biochar and soil organic C in the first year, Rh in B was higher than that in Co. The net greenhouse gas emission for 2 years considering biochar C, plant residue C, CH4 and N2O emissions, and Rh was lower in B (5.53 Mg CO2eq ha?1) than Co (11.1 Mg CO2eq ha?1). Biochar application worked for C accumulation, increasing plant residue C input, and mitigating N2O emission by improving soil environmental conditions. This suggests that bamboo biochar application in paddy fields could aid in mitigating global warming.  相似文献   

8.
9.
Abstract

An ideal state for agroecosystems to mitigate global warming should include both decreasing CO2 and CH4 emissions and increasing soil carbon storage. Two-year field experiments were carried out to examine the effects of water management (continuous flooding [CF] and Eh control [EH]) and rice straw management (application [+S] and removal [–S]) on the soil carbon budget in a single-cropping paddy field in Japan. The EH water management based on soil redox potential that the authors have proposed decreased the total CH4 emission during the rice growing period compared with CF. The +S increased CO2 emission as soil respiration during the non-flooded fallow period compared with –S, but also increased straw residues in the soil. However, there was little evidence for sequential carbon accumulation in the soil over the year by +S. The resultant annual budget of soil carbon was a loss of 32–103 g C m?2 in the EH+S treatment compared with a loss of 166–188 g C m?2 in the CF–S treatment. Taking into account the global warming potentials, the EH+S treatment also decreased the total CO2-equivalent emission compared with the CF–S treatment. Consequently, a combination of appropriate water management and straw application will be an effective option in decreasing both CO2-equivalent emission and sustaining soil carbon storage.  相似文献   

10.
中国太湖地区水稻田甲烷排放的估算   总被引:13,自引:0,他引:13  
Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closed chamber method in 1992 and 1993 and CH4 emission from this region (total area of paddy soils was about 1.88 million hectares,of which 0.63 million hectares are distibuted in the south of Jiangsu province) was estimated on the basis of the meam CH4 fluxes observed.The results showed that the mean CH4 flaxes from late rice and single cropping rice field were quite similar under the prevailing cultivation practices in the region,being around 5 mg CH4/m^2/h(4.31-5.31mg CH4/m^2/h for various cultivars of the late rice and 3.20-6.22mg CH4/m^2/h for various treatments of the single cropping rice).Total CH4 emission from paddy soils in the region was estimated to e 0.185-0.359 Tg CH4 per year.Continuously flooding the soil with a water layer till ripening caused higher mean CH4 flux;and addition of nitrification inhibitor(thiourea) stimulated CH4 emission.There was no simple repationship between CH4 flux and either soil temperature or soil Eh.  相似文献   

11.
不同水稻、小麦品种对N2O排放的影响   总被引:3,自引:0,他引:3  
B. GOGOI  K. K. BARUAH 《土壤圈》2012,22(1):112-121
Plant species of cropping systems may affect nitrous oxide (N2O) emissions. A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationship between soil and plant parameters with N2O emissions. The results indicated that N2O emissions from different wheat varieties ranged from 12 to 291 μg N2O-N m-2 h-1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m-2. In the rice season, it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190--216 mg N2O-N m-2. The seasonal integrated flux of N2O differed significantly among wheat and rice varieties. The wheat variety HUW 234 and rice variety Joymoti showed higher seasonal N2O emissions. In the wheat season, N2O emissions correlated with soil organic carbon (SOC), soil NO3--N, soil temperature, shoot dry weight, and root dry weight. Among the variables assessed, soil temperature followed by SOC and soil NO3--N were considered as the important variables influencing N2O emission. N2O emission in the rice season was significantly correlated with SOC, soil NO3--N, soil temperature, leaf area, shoot dry weight, and root dry weight. The main driving forces influencing N2O emission in the rice season were soil NO3--N, leaf area, and SOC.  相似文献   

12.
中国常年淹水稻田CH4排放量估算   总被引:4,自引:0,他引:4  
A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China.The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH4 year^-1. The uncertainties of these estimations are discussed as well. However,the emissions during the non-rice growing season could not be estimated because of limited available data. Nevertheless,methane emissions from rice fields that were flooded year-round could be several times higher than those from the rice fields drained in the non-rice-growing season. Thus, the classification of “continuously flooded rice fields”in the IPCC (International Panel on Climate Change) Guidelines for National Greenhouse Gas Inventories is suggested to be revised and divided into “continuously flooded rice fields during the rice growing season” and “year-round flooded rice fields”.  相似文献   

13.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

14.
Abstract

Methane-oxidizing bacteria (MOB) are crucial to the reduction of CH4 emitted to the atmosphere. However, it is unclear how MOB in rice straw are affected by straw decomposition processes. In a Japanese rice field, a year-round experiment was set up to study the effects of agricultural practice (rice cultivation/winter fallow), straw parts (leaf sheath/blade) and the site of straw placement (plow layer/soil surface) on MOB communities in rice straw using denaturing gradient gel electrophoresis (DGGE) and DNA sequencing analyses of key MOB functional genes (pmoA and amoA). Thirty-eight different DGGE bands were observed over the entire investigation period. Principal component analysis of DGGE pattern suggested that agricultural practice is the key factor regulating the MOB communities. Sequencing of dominant DGGE bands showed that: (1) during the rice cultivation period, methanotrophs (particularly type I methanotrophs) dominated the MOB community, (2) during the winter fallow season both type I and type II methanotrophs were dominant in sheath segments placed both on the soil surface and in the plow layer, whereas ammonia oxidizers seemed to dominate blade segments placed in the plow layer. Alignment of diagnostic amino acid sequences of MOB suggested the presence of novel ammonia oxidizers in rice straw in rice fields.  相似文献   

15.
16.
小麦秸秆全量还田对水稻生长及稻田氧化还原物质的影响   总被引:10,自引:1,他引:9  
以粳型水稻品系2645为材料,设小麦秸秆全量还田和不还田两个处理,研究小麦秸秆全量还田对水稻生长和稻田氧化还原物质的影响。结果表明,小麦秸秆全量还田提高了水稻穗粒数和产量,分别提高6.3%~6.9%和2.4%~10.0%,但使有效分蘖期(移栽后25 d)稻田水体含氧量降低了19.2%~68.4%,土壤还原物质总量和活性还原物质含量分别提高了6.2%~14.2%和15.1%~86.5%,水溶性Fe2+含量提高9.7%~30.1%,土壤氧化还原电位(Eh)和水稻根系活力分别下降3.6%~22.4%和13.5%~21.1%,拔节期分蘖数量和叶面积指数(LAI)分别减少9.5%和1.8%~4.3%。表明小麦秸秆全量还田增加了水稻生长前期稻田水体氧消耗量,促进了土壤还原物质积累,降低了土壤Eh和水稻根系活力,对水稻前期的群体发展有一定影响,但不影响最终产量。  相似文献   

17.
18.
19.
ABSTRACT

In Japan, rice straw (RS) is commonly incorporated into the soil after harvest to maintain the fertility of paddy soil. However, in mixed crop–livestock systems, RS is collected to feed livestock and then cow dung compost (CDC) is applied to the fields. We found in previous research that CDC supplied more N to the fields than RS, but the soil total N and available N of fields to which CDC was applied were similar to those receiving conventional RS application. To identify the reason for this result, we investigated the N inputs (organic matter, fertilizer, N fixation), N outputs (plant N uptake, N leaching loss), and the N balance of RS application (RS treatment) and RS removal plus CDC application (CDC treatment) in 10 neighboring paddy field pairs in Mamurogawa town, Yamagata Prefecture, Japan. The N fertilizer contributed the highest percentage to total N input, followed by organic matter and N fixation. The amounts of N fertilizer and N fixation in the RS treatment were similar to those in the CDC treatment. CDC contributed significantly more N to the fields than RS, but the total N input was similar between treatments. The N output from plant N uptake and leaching loss were higher in the CDC treatment than the RS treatment, but the difference was not significant. Plant N uptake was the main N output, accounting for 98% of total N output. The N balance was positive and similar between treatments. Therefore, the non-significant differences in total N input, total N output, and N balance between treatments explain the similarity in soil total N and available N.  相似文献   

20.
Rice straw contains up to 2.3% K in dry matter, including potassium (K) subcompartmented in phytoliths, complex siliceous structures formed in plant tissue via precipitation of Si. Rice straw is usually returned to the soil as a conventional practice to sustain soil nutrients, and therefore, the K pool accompanied with rice straw phytoliths is also cycled. Based on phytoliths obtained by ashing of rice straw at 400 °C and dissolution experiments using batch extraction in combination with physical separation of phytoliths by heavy liquid, this study evaluated the phytolith K(phytK) pool in rice straw and aged phytoliths in paddy soils. Entrapped organic matter containing K within phytolith silica cells was visualized by X-ray tomographic microscopy, and releases of this phytK pool accompanying phytolith dissolution were quantified. A 1% Na2CO3 solution, which has been commonly used to extract amorphous Si and to quantify soil phytoliths, showed obvious responses for K derived from phytolith dissolution, indicating that the Na2CO3 method can be developed for measurement of phytK. In 13 soil samples, Na2CO3-dissolvable K content assignable to phytK was 0.55 ± 0.39 g kg?1 in the puddled horizon, suggesting the phytK pool is of high significance for the management of K in paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号