首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of factors affecting leaching patterns under tilled and no-till soils are important for successful modelling of solute leaching. There can be various other factors that may offset an anticipated tillage effect on solute leaching. A study was conducted in a Donnelly silty loam (fine-loamy, mixed frigid Typic Cryoboralf) at Dawson Creek, British Columbia, Canada, to investigate how a reactive chemical (FD&C blue#1 dye) and a conservative tracer (bromide, Br) would leach in a no-till (NT) soil compared to a tilled (T), when high volume of water are provided discretely, at short time intervals. Three plots of 1.5 m × 1.5 m were prepared in each NT and T soil for flood irrigation. The chemicals were applied by spray using a knapsack sprayer. Soil cores were extracted from a maximum depth of 1.25 m using a truck mounted hydraulic soil sampler at 5, 19, and 55 days (S1, S2, and S3, respectively) after irrigating different amounts of water. These soil cores, sub-sampled at different depths, were analysed for water content, Br and dye concentrations. The analyses indicated that Br and dye moved in distinctive patterns in the two tillage systems. After irrigating with a total of 240 mm of ponded water in three applications over a period of 10 days, the centre of mass of the travel depth profiles for Br was 0.15 m in the NT and 0.26 m in the T plots; for the dye, 0.27 m in the NT and 0.17 m in the T plots. At soil core sampling times S1, S2, and S3, the average mass recovered for Br was 82%, 39%, and 27% in the NT and 78%, 50%, and 45% in the T plots. For the dye, mass recovery rates of 78%, 58%, and 22% were observed in the NT and 92%, 79% and 25% in the T plots. The increasing mass loss of Br observed with increasing net water inputs in the two tillage systems was more likely due to a lateral loss with water than due to a leaching below sampling depth. The increasing mass loss of dye over time in the two tillage systems was more likely due to a high rate of degradation than to a loss through a lateral or vertical flow.  相似文献   

2.
Abstract

Yield, water storage, and water use efficiency of irrigated cowpea (Vigna unguiculata L. Walp) were evaluated under four tillage systems and five irrigation regimens. The tillage systems are conventional tillage, reduced tillage, zero tillage, and manual tillage, and the irrigation regimens were created by using a line source sprinkler system. Reduced and conventional tillage produced higher yield and water use efficiency than zero and manual tillage (p<0.05). Reduced tillage produced the highest yield of 1.88 t/ha and had slightly higher yields than conventional tillage in the first four irrigation levels because of higher water storage and lower percolation than conventional tillage. Although manual tillage had high water storage and low percolation, the water was not beneficially used probably because of high evaporation leading to significantly (p<0.05) high soil moisture tension before irrigation. Zero tillage, on the other hand, resulted in significantly (p<0.05) lower application efficiency due to higher runoff. Therefore, irrigated land requires some forms of mechanical tillage or water conservation measures for manually tilled land for improved water use efficiency.  相似文献   

3.
Energy and water budget analyses are employed as methods for assessing the effects of vegetation type, cultivation practices, and irrigation methods on the microclimate. A comparison is made of vegetation types that employ water received from (1) natural precipitation and (2) irrigation. Forest lands are compared to corn cultivated by conventional tillage and no tillage methods. The forest canopy generally has a lower surface albedo, greater surface roughness, higher transpiration rates, and increased water storage than the bare soil, mulched, and vegetated surfaces of a corn field. No tillage cultivation reduces wind and water erosion, lowers soil temperatures, and improves water retention compared to standard tillage used on corn fields. Irrigated agriculture has replaced much of the drought resistant vegetation of the Central Valley of California. The energy and water budgets of irrigated crops grown in the semi-arid climate of the Central Valley and irrigated by flood or sprinkler methods exhibit microclimates in which evapotranspiration dominates the energy and mass fluxes. Drip irrigation methods, by contrast, have reduced water losses compared to flood and sprinkler methods. The drip system supplies metered amounts of water to the base of each plant; low soil evaporation and improved water supply to the growing plant results from this method. The latent heat flux is reduced over that found in fields irrigated by flooding or spraying. Generally, agricultural transformation of large stands of natural vegetation is expected to change the micro- and macroclimate of the areas affected.  相似文献   

4.
Soil water evaporation, redistribution of surface applied salts and unsaturated hydraulic conductivity were determined in field plots of a silt loam soil kept either untilled or tilled to a depth of 5 cm 2–3 days following irrigation. The hydraulic gradients measured were comparatively steeper and the zone of zero flux during drying occurred at greater depths in untilled than tilled soil. Tillage induced soil mulch reduced evaporation losses; its effectiveness, however, decreased during high external evaporative demand conditions. Some empirical relations to determine evaporation utilizing more easily accesible parameters, such as surface soil water content or suction and U.S. open-pan evaporation, were established for predictive purposes. Due to reduction in upward movement of water, shallow tillage resulted in decrease in upward movement of salts and thus, increased the efficiency of leaching during intermittent ponding. The empirical relationship describing the leaching process showed a net saving of 12.7% in water required to attain 70% removal of surface accumulated salts. Increase in unsaturated hydraulic conductivity of soil due to salinization was also observed.  相似文献   

5.
漫灌和喷灌条件下土壤养分运移特征的初步研究   总被引:12,自引:2,他引:10  
用非饱和土壤溶质运移的对流扩散方程及其解析解,联系大田漫灌、喷灌的入渗实际,在室内试验的基础上,研究了漫灌、喷灌入渗条件下,土壤养分运移的特征。研究结果表明,阳离子K,由于土壤颗粒的吸附作用,流动性差,入渗结束后,K浓度集中分布在土表0~20cm土层内。阴离子NO3-,流动性强,入渗方式对NO3-离子运移影响大。漫灌入渗条件下,孔隙水流速度大(是喷灌的3.5倍),NO3-运移快,机械弥散作用是喷灌的11.6倍,入渗结束后,NO3-浓度集中分布在土壤深层的作物主根区之外,不利于作物吸收利用,并容易造成地下水污染。而在喷灌入渗条件下,供水强度低,孔隙水流速度小,NO3-运移慢,弥散作用弱,入渗结束后,NO3-浓度的峰值迁移浅,NO3-浓度集中分布在土壤表层作物主根区内,有利于作物吸收利用。这正是喷灌节水、保肥的内在机理。  相似文献   

6.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

7.
喷灌强度对滨海盐碱地土壤水盐运移特征的影响   总被引:3,自引:1,他引:3  
为研究一维条件下喷灌强度对滨海盐碱地土壤湿润峰运移、水分再分布特征及盐分淋洗的影响,选用滨海盐碱地黏质重度盐碱土和砂质重度盐碱土2种土壤,设置5个喷灌强度(分别是1.72、3.13、5.27、8.75、10.11mm/h),进行室内喷灌条件下土柱模拟试验。结果表明,喷灌强度与土壤黏粒含量显著影响湿润锋运移。湿润锋推进速度随着喷灌强度增加而增大,而湿润深度随之减小,且土壤黏粒含量越高,越不利于湿润锋运移;随着土壤水分再分布过程的推进,黏质重度盐碱土在3.13mm/h喷灌强度下同一深度体积含水率较其他处理大,砂质重度盐碱土在1.72mm/h喷灌强度条件下土柱具有较高的保水性;采用喷灌淋洗,可使上层土壤脱盐,盐分均累积至下层土壤,并使其急剧增加且达到最大值。对于黏质重度盐碱土,3.13mm/h喷灌强度下,盐分淋洗效果较好,而对于砂质重度盐碱土,8.75mm/h喷灌强度淋洗效果优于其他处理。该研究可为喷灌技术合理和可持续开发利用滨海盐碱地提供参考。  相似文献   

8.
为探明间歇喷灌和连续喷灌条件下的土壤水分运动规律,建立喷灌随时间变化的非均匀灌水边界下的土壤水分二维运动模型,借助COMSOL数值模拟软件,实现模型的求解,并通过土箱试验对模型进行验证,分析不同喷灌模式下土壤水分运动特征,评估喷灌均匀性和喷灌模式对土壤含水率均匀性的影响。结果表明,土壤含水率和土壤湿润峰模拟值与实测值之间的一致性较好。喷灌模式对土壤水分运动过程和含水率均匀度影响不大。随着间歇次数和间歇时长的增加,喷灌结束时表层土壤含水率减小、水分入渗深度增加。喷灌条件下,土壤含水率均匀度高于地表测得的喷灌均匀度。当喷灌均匀度为39.77%~80.15%时,土壤含水率均匀度为88.57%~94.47%。当喷灌均匀度较低、点喷灌强度较高、总灌水量较大时,采用间歇喷灌、增加间隙次数和总间歇时长,可以一定程度降低地表径流和深层渗漏风险、改善土壤含水率均匀性。研究可为喷灌系统设计均匀度合理取值和高效运行提供理论基础。  相似文献   

9.
To study the effect of different soil tillage practices and the consequences of soil deformation on the functioning of the pore system, we performed unsaturated leaching experiments (by applying a suction of −10 kPa) on undisturbed soil columns from the Ap-horizon of a luvisol derived from glacial till (agricultural site at Hohenschulen, North Germany). We compared two different tillage practices (conventionally tilled to 30 cm depth, and conservational chiselled to a depth of 8 cm-Horsch system) with respect to soil strength, pore connectivity and their effect on the fate of surface-applied fertilisers. The soil strength was measured by determining the precompression stress value (PCV). The conventionally tilled topsoil had a PCV of 21 kPa at a pore water potential of −6 kPa, while the conservation treatment resulted in a slightly higher PCV of 28 kPa, suggesting a slowly increasing soil strength induced by the formation of aggregates under reduced tillage practice.

The leaching experiments were modelled using the convection dispersion equation (CDE) and a modified version of the mobile–immobile approach (MIM), which included three water fractions: mobile, immobile and totally immobile water. From the CDE mobile water fractions (θm) ranging from 47 to 67% were found, and θm was slightly higher in the ploughed seedbed compared to the conservation-tilled one. This could be due to higher aggregation in the latter one. Dispersivities were relatively large, ranging from 44 to 360 mm, but no difference was found for the treatments. The MIM could simulate the drop in concentration when leaching was interrupted, but overall did not improve the simulation, despite the larger number of fitting parameters.

Compacting the soil with loads of 70 kPa prior to the leaching experiment did not affect solute transport in the conservational tilled soil. In the conventional-tilled soil, however, the dispersivity decreased and the mobile water content increased compared to the non-compacted soil, suggesting that the former one is less prone to deformation by mechanical loads.  相似文献   


10.
Abstract

The aim of this study was to examine the leaching of potassium, magnesium, manganese and iron in tilled and orchard silty loam soil. The experimental treatments were: conventionally tilled field (CT) with main tillage operations including pre-plough (10 cm)+harrowing followed by mouldboard ploughing to 20 cm depth, and a 35-year-old apple orchard (OR) with a permanent sward. Leaching of the cations was determined in soil columns of undisturbed structure, 21.5 cm diameter and 20 cm height, from a depth of 0–20 cm. All the columns were subjected to spray irrigation at a level of 1110 ml (30 mm), and leachate in 50-ml increments was collected. Concentration of the cations in the leachate was determined using a spectrophotometer ICP-AS. Pore size distribution data showed that the volume of pores >20 µm under CT was greater at a depth of 0–10 cm and lower in the 10–20 cm soil layer under OR, and the reverse was true with respect to pores <6 µm. At each 50-ml leachate, concentration of all the cations was greater under CT than OR. In most leachates the differences were more pronounced for potassium and magnesium than iron and manganese. Percolation of the leachate was considerably faster in orchard than tilled soil.  相似文献   

11.
The Tatura system for the preparation of seed-beds for irrigated annual row-crops is described, where the soil is tilled when wet and friable and so requires few passes with implements to become suitable for crops, and where seeds are sown into wet soil. In soil prepared by the Tatura system, the percentage of aggregates < 0.5 mm diameter (as measured by dry-sieving) in the seed-bed was about half that found in commercially prepared seed-beds which were tilled up to 50 times when dry. With the Tatura system, the wetter the soil (up to 22% water content) when tilled, or the more passes (up to 4) of the implement at a water content of 22%, the less dust (< 0.5 mm diameter) and/or fewer clods (> 20 mm diameter) were formed.

The macro-structure of the surface layer of soil tilled at different water contents by the Tatura system was also quantified statistically by the method of wax-impregnation. The macro-structures were compared at the 10 mm, 20 mm, 40 mm, 60 mm and 80 mm depths in beds of soil prepared for irrigated annual row-crops by a system which has been described previously. Within each treatment (21.7%; 19.0%; 11.6% water content at 0–100 mm depth at tillage), the linear porosity and mean pore-size each tended to decrease with depth to 40 mm, with no further change or slight decrease to 80 mm depth. In all treatments, the mean aggregate-size tended to increase with depth from 10 mm depth to 80 mm depth. The sizes of pores and aggregates varied across each bed and possibly depended on the position of tines within the bed at each pass at tillage. Water content at tillage led to small differences in structure of the beds of soil. Soil tilled at a water content slightly above the Casagrande Plastic Limit generally had slightly larger pores and aggregates than soil tilled at lower water contents.  相似文献   


12.
Tillage effects on near-surface soil hydraulic properties   总被引:1,自引:0,他引:1  
The processes for the formation of porosity are thought to differ between tilled and non-tilled cropping systems. The pores are created primarily by the tillage tool in the tilled systems and by biological processes in non-tilled systems. Because of the different methods of pore formation, the pore size distribution, pore continuity and hydraulic conductivity functions would be expected to differ among tillage systems. The objective of this study was to determine effects of three tillage systems — mold-board plow (MP), chisel plow (CP), and no-till (NT) — on hydraulic properties of soils from eight long-term tillage and rotation experiments. Tillage effects on saturated and unsaturated hydraulic conductivity, pore size distribution, and moisture retention characteristics were more apparent for soils with a continuous corn (CC) rotation than for either a corn-soybean (CS) rotation or a corn-oats-alfalfa (COA) rotation. Pore size distributions were similar among tillage systems for each soil except for three soils with a CC rotation. The MP system increased volume of pores >150 μm radius by 23% to 91% compared with the NT system on two of the soils, but the NT system increased the volume of the same radius pore by 50% on one other soil. The NT system had 30 to 180% greater saturated hydraulic conductivity than either the CP or MP systems. The NT system with a CC rotation showed a greater slope of the log unsaturated hydraulic conductivity; log volumetric water content relationship on two of the soils indicating greater water movement through a few relatively large pores for this system than for either the CP or MP systems.  相似文献   

13.
Leaching with deep drainage is one of the loss pathways of carbon (C) and nitrogen (N) in cropping fields. However, field studies in irrigated row cropping systems are sparse. A 3‐year investigation on C and N leaching associated with deep drainage was overlaid on a long‐term experiment on tillage practices and crop rotations in Australia. The treatments included cotton (Gossypium hirsutum L.) monoculture and cotton–wheat (Triticum aestivum L.) or maize (Zea maize L.) rotations with maximum or minimum tillage. The deep drainage C and N concentrations at 0.6 and 1.2 m depth were measured after furrow irrigation with ceramic cup samplers during the 2014–15, 2015–16 and 2016–17 cotton seasons. Pre‐planting dissolved organic carbon (DOC) concentration in soil at 0.6–1.2 m depth during 2016–17 was 64 mg kg?1 for maximum tilled cotton monoculture, 36 mg kg?1 for minimum tilled cotton monoculture and 39 mg kg?1 for cotton–wheat, and in maize and cotton subplots 51 and 41 mg kg?1, respectively. Post‐harvest DOC values in soil were similar in all treatments (average of 32 mg DOC kg?1). Total organic carbon (TOC) losses in deep drainage were equal to 2%–30% of TOC gained in irrigation water. Oxidized N losses in deep drainage ranged from 0.7% to 12% of applied N (260 kg ha?1). NOx‐N concentrations in leachate under maize systems (20 mg L?1) were up to 73% lower than those in cotton systems (75 mg L?1). Maize sown in rotation with cotton can improve cotton yield, reduce N leaching and improve N use efficiency of subsequent cotton.  相似文献   

14.
为研究喷灌均匀系数对土壤水分、作物产量及水分利用效率的影响,进一步探讨喷灌条件下适宜耕作措施,于2018—2019年冬小麦生长季进行试验,试验设置旋耕(RT)、深松(ST)、深翻耕(CT)3种耕作处理,在每个处理选取18 m×18 m区域将其划分为9个6 m×6 m的小区作为试验区。结果表明:在3种耕作方式下历次喷灌均匀系数均值在63.91%~76.83%,而表层土壤含水量均匀系数均值依然可以达到84.20%~89.83%,较前者高14.48%~31.75%;冬小麦产量均匀系数较历次灌溉均匀系数均值高出9.99%~23.79%,比累计灌溉均匀系数低2.11%~7.85%,与表层土壤含水量均匀系数均值相差0.82%~6.04%。与RT相比,ST和CT处理产量分别提高9.38%,13.22%,水分利用效率分别增加10.61%,12.88%。即相较于历次灌溉均匀系数,冬小麦产量均匀系数受累计灌溉均匀系数与表层土壤含水量均匀系数均值影响更大,且ST、CT为该灌溉条件下适宜的耕作方式。  相似文献   

15.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   

16.
为研究耕作对浅沟径流产沙及形态发育特征的影响,在野外调查的基础上,设计坡度(15°、20°、25°)、雨强(1.0、1.5、2.0 mm/min)及放水流量(7.53~23.45 L/min)3个处理,采用室内模拟降雨和放水冲刷的方法,测定了不同处理下浅沟径流量、产沙量。结果表明:1)2种浅沟水流均为紊流,耕作使浅沟水流雷诺数和弗劳德数分别减小0.95%~30.77%、2.64%~39.14%,阻力系数和糙率系数分别增加4.01%~58.82%、0.88%~27.87%;2)试验条件下,耕作使浅沟土壤剥蚀率增大9.48%~37.87%,未耕作与耕作浅沟土壤剥蚀率分别与坡度—流量交互作用、雨强—坡度交互作用呈极显著线性关系,土壤剥蚀率与径流剪切力、径流功率及单位径流功率均呈显著的线性关系,未耕作浅沟发生剥蚀的临界剪切力、临界功率及临界单位径流功率分别为17.576 N/m2、5.036 W/(m2·s)、0.0381 m/s,耕作浅沟为10.585 N/m2、3.544 W/(m2·s)、0.0277 m/s;3)耕作使浅沟宽度增加1.98%~31.79%,浅沟面积增大0.84%~32.03%,下切深度降低2.82%~26.67%;4)耕作使浅沟土壤侵蚀量增加0.91%~22.80%,未耕作和耕作浅沟土壤侵蚀量分别占坡面土壤侵蚀总量的44.09%~74.16%和42.44%~56.44%,与雨强—流量交互作用均呈极显著的线性函数关系。结果可为该区浅沟侵蚀预测模型的建立及农业生态环境安全与保护提供科学依据。  相似文献   

17.
A thorough understanding of how conservation tillage influences water quality is predicated on knowledge of how tillage affects water movement. This paper summarizes the effects of conservation tillage on water movement and quality mainly based on long-term experiments on Luvisols at the North Appalachian Experimental Watershed near Coshocton, OH, USA. Conservation tillage can have a much larger effect on how water moves through the soil than it does on the total amount percolating to groundwater. Soil macroporosity and the proportion of rainfall moving through preferential flow paths often increase with the adoption of conservation tillage and can contribute to a reduction in surface runoff. In some medium- and fine-textured soils most of the water that moves to the subsoil during the growing season (May–October) is probably transmitted by macropores. If a heavy, intense storm occurs shortly after surface application of an agricultural chemical to soils with well-developed macroporosity, the water transmitted to the subsoil by the macropores may contain significant amounts of applied chemical, up to a few per cent, regardless of the affinity of the chemical for the soil. This amount can be reduced by an order of magnitude or more with the passage of time or if light rainstorms precede the first major leaching event. Because of movement into the soil matrix and sorption, solutes normally strongly adsorbed by the soil should only be subject to leaching in macropores in the first few storms after application. Even under extreme conditions, it is unlikely that the amount of additional adsorbed solute transported to groundwater will exceed a few per cent of the application when conservation tillage is used instead of conventional tillage. In the case of non-adsorbed solutes, such as nitrate, movement into the soil matrix will not preclude further leaching. Therefore, when recharge occurs during the dormant season thorough flushing of the soil, whether macropores are present or not, can move the remaining solutes to groundwater. Thus, the net effect of tillage treatment on leaching of non-adsorbed solutes should be minimal.  相似文献   

18.
研究了不同灌溉方式下冬小麦田间土壤水分变化特点及对小麦产量形成的影响。结果表明,渗灌浇根不浇地,冬小麦全生育期渗灌田0~20cm土壤表层含水量较低,比喷灌0~20cm土层土壤水分消耗小,比20~120cm土层土壤水分消耗多;2种灌溉方式120cm以下土层土壤含水量为冬小麦利用较少。渗灌比喷灌增产11.6%,比少灌增产17.6%,比喷灌节水57.1%,其水分利用效率为喷灌的1.35倍。  相似文献   

19.
Soil tillage may increase vulnerability to water erosion, whereas no tillage and other conservation cultivation techniques are viewed as strategies to control soil erosion. The objective of this research was to quantify runoff and soil losses by water erosion under different soil tillage systems at the Santa Catarina Highlands, southern Brazil. A field study was carried out using a rotating-boom rainfall simulator with 64 mm h−1 rainfall intensity on a Typic Hapludox, between April 2003 and May 2004. Five rainfall tests were applied along successive cropstages. Surface cover was none (fallow) or soybean (Glycine max, L.). Five treatments were investigated, replicated twice. These treatments were conventional tillage on bare soil (BS) as a control treatment and the following treatments under soybean: conventional tillage (CT), no tillage over burnt crop residues on never before cultivated land (NT-B), no tillage over desiccated crop residues, also on never before cultivated land (NT-D) and traditional no tillage over desiccated crop residues on a soil tilled 4 years before this experiment (NT-PT). Water losses by surface runoff seemed to be more influenced by vegetative crop stadium than by tillage system and consequently a wide range of variation in surface runoff was found, following successive cropstages. The most efficient tillage system in reducing surface runoff and soil losses was no tillage, particularly the NT-PT treatment. Sediment losses were more influenced by tillage system than water losses. In the NT-B, NT-D and NT-PT treatments the rate of sediment losses along the crop vegetative cycle showed a tendency to increase from the first to the second cropstages and later to decrease from the third cropstage onwards. In the conventionally tilled treatment (CT) soil losses were greater than in any of the no tillage treatments (NT-D, NT-B and NT-PT) during the initial growth periods, but at the end of the vegetative period differences in sediment rates between tilled and non-tilled treatments tended to be smaller. In the BS control treatment, soil losses progressively increased following the vegetative growth season of soybean.  相似文献   

20.
The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams, but because of the steppe's dry environment, they need to be irrigated. Our objective was to study irrigation management of cotton production on sierozem soils in southern Kazakhstan. From 2006 to 2008, we grew irrigated cotton on low, moderately, and highly saline sierozem soils in the South Kazakhstan Oblast. Soils were irrigated to reduce salinity and improve growth. Yields increased with reduced salinity especially because the highly saline soil could not support growth every year and because it had 33 to 40% less yield when cotton was grown on it. Soils were managed with multiple tillage and cultivations by machinery and hand, which maintained low bulk densities near the surface and a tillage pan at about the 30-cm depth. Future management improvements include fewer tillage operations, which would decrease energy needs and compaction. Reduced upstream salinity would reduce preplanting irrigation needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号