首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A comprehensive understanding of variables associated with spatial differences in community composition is essential to explain and predict biodiversity over landscape scales. In this study, spatial patterns of bird diversity in Central Kalimantan, Indonesia, were examined and associated with local-scale (habitat structure and heterogeneity) and landscape-scale (logging, slope position and elevation) environmental variables. Within the study area (c. 196 km2) local habitat structure and heterogeneity varied considerably, largely due to logging. In total 9747 individuals of 177 bird species were recorded. Akaike's information criterion (AIC) revealed that the best explanatory models of bird community similarity and species richness included both local- and landscape-scale environmental variables. Important local-scale variables included liana abundance, fern cover, sapling density, tree density, dead wood abundance and tree architecture, while important landscape-scale variables were elevation, logging and slope position. Geographic distance between sampling sites was not significantly associated with spatial variation in either species richness or similarity. These results indicate that deterministic environmental processes, as opposed to dispersal-driven stochastic processes, primarily structure bird assemblages within the spatial scale of this study and confirm that highly variable local habitat measures can be effective means of predicting landscape-scale community patterns.  相似文献   

2.
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales.  相似文献   

3.
Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.  相似文献   

4.
Urbanization affects amphibian communities through habitat loss, fragmentation, and degradation of habitat quality. The effects of these changes in habitat at different scales vary depending on the sensitivity of individual species. We assessed the breeding distribution of anurans along an urban–rural gradient in Shanghai, China, a region experiencing intensive urbanization. Our results showed that urban density had a significantly negative influence on the overall anuran abundance and diversity and that the responses of individual species to urbanization varied. Pond age was an overall predictor in models describing the responses of Pelophylax nigromaculatus, Fejervarya multistriata, and M. fissipes and total anuran abundance. The quality of habitat at a pond was also important, and the high abundance of Bufo gargarizans and Pelophylax plancyi was associated with ponds with aquatic vegetation coverage. Urban density showed strong negative effects on B. gargarizans, total anuran abundance, and species richness. The broad-scale landscape variables associated with forests, agricultural fields, and wetlands surrounding breeding ponds have been shown to affect anuran abundance and species richness. The response of individual species, total abundance, and species richness to urbanization reflected differences in their ecological requirements. We quantified the effects of urbanization on frogs in a rapidly urbanizing region, and our results demonstrated that both multi-spatial and temporal variables affect anurans in Shanghai. Our results emphasized the importance of anuran conservation planning in urbanized areas to preserve and/or restore terrestrial habitat and to improve connectivity between ponds and other wetlands.  相似文献   

5.
Wetland management in the United States is organized through a permit process that requires a permit be filed with the U.S. Army Corps of Engineers prior to wetland alteration. A collection of these permits from 1984 through 1992 was analyzed in conjunction with classified Landsat Thematic Mapper data from 1984 and 1992 in order to quantify changes to wetland habitat in the study area in coastal North Carolina. The wetland management process in the U.S. focuses on a site-by-site review, possibly overlooking important changes to wetlands at the landscape-scale. These the two datasets were used to determine if wetland habitat loss was occurring at permit sites, but also to determine if landscape-scale wetland fragmentation and reorganization were occurring in the area surrounding each permit site under the wetland management process. The use of these two datasets attempted to span two scales: the site-specific scale often used in the management of wetlands, and the landscape-scale where effects of such management are evident. Important conclusions from the research include the following. First, while several sources imply that coastal wetlands are disproportionately protected as a result of the widespread recognition of their habitat value, estuarine wetlands were altered much more frequently in the study area than their inland counterparts. Second, despite federal level efforts that require compensatory mitigation when wetland habitat is lost, such mitigation was required in only three percent of permits, ensuring wetland loss. Third, correlation between estimates of wetland loss from the Permit Record and from the remotely sensed record was minimal, highlighting the problems inherent to wetland delineation and implying alterations to habitat not evidenced in the permit record. Finally, landscape-scale changes of loss, fragmentation and habitat reorganization have occurred in estuarine emergent wetland habitat in areas adjacent to several permit sites, implying unanticipated additional impacts to permitted actions. Wetland loss at the permit site occurred with additional fragmentation in 80 percent of the sites examined. The results highlight the lack of agreement between management and landscape-scale wetland structure, function and change, and imply the importance of examining the spatial context of permit sites in the permit review and evaluation procedure.  相似文献   

6.
The crested ibis (Nipponia nippon), a species at the brink of extinction in 1981, remain restricted to a small (25 km radius) area of temperate forests in central China. To improve the chances of successful reintroduction into new areas we developed a multifactor logistic regression model of habitat association at multiple scales. Using habitat variables, i.e. vegetation, human impact, elevation, and wetland, we compared occupied and unoccupied sites at grain sizes ranging from 1 to 6400 ha. The goodness-of-fit of the habitat suitability model depended on grain size, with the best fit (most information) at a grain size of 2 ha. Semivariograms showed the habitat variables at control sites have a gradient pattern, yet the crested ibis had their specific habitat preferences, and only selected a narrow range from the available gradient. Our results indicated that spatial scale needs to be considered in developing habitat models for applications such as conservation planning.  相似文献   

7.
The degree to which habitat fragmentation affects bird incidence is species specific and may depend on varying spatial scales. Selecting the correct scale of measurement is essential to appropriately assess the effects of habitat fragmentation on bird occurrence. Our objective was to determine which spatial scale of landscape measurement best describes the incidence of three bird species (Pyriglena leucoptera, Xiphorhynchus fuscus and Chiroxiphia caudata) in the fragmented Brazilian Atlantic forest and test if multi-scalar models perform better than single-scalar ones. Bird incidence was assessed in 80 forest fragments. The surrounding landscape structure was described with four indices measured at four spatial scales (400-, 600-, 800- and 1,000-m buffers around the sample points). The explanatory power of each scale in predicting bird incidence was assessed using logistic regression, bootstrapped with 1,000 repetitions. The best results varied between species (1,000-m radius for P. leucoptera; 800-m for X. fuscus and 600-m for C. caudata), probably due to their distinct feeding habits and foraging strategies. Multi-scale models always resulted in better predictions than single-scale models, suggesting that different aspects of the landscape structure are related to different ecological processes influencing bird incidence. In particular, our results suggest that local extinction and (re)colonisation processes might simultaneously act at different scales. Thus, single-scale models may not be good enough to properly describe complex pattern–process relationships. Selecting variables at multiple ecologically relevant scales is a reasonable procedure to optimise the accuracy of species incidence models.  相似文献   

8.
The distribution and abundance of species are shaped by local and landscape processes, but the dominant processes may differ with scale and increasing human disturbance. We investigated population responses of two pool-breeding amphibian species to differences in local and landscape characteristics in suburbanizing, southeastern New Hampshire, USA. In 2003 and 2004, we sampled 49 vernal pools for spotted salamander (Ambystoma maculatum) and wood frog (Lithobates sylvaticus) egg masses. Using egg masses as a proxy for breeding-female population size, we examined the relative influence of five land-use and three isolation variables at two scales (300 and 1000 m) and five wetland variables on egg-mass abundance. For both species, road density at the landscape scale (1000 m) and hydroperiod most strongly predicted egg-mass abundance, with abundance decreasing as roads became denser and hydroperiods shortened. Wetland isolation was also an important predictor, with abundance greatest at more isolated pools, suggesting that both species concentrate at isolated pools when alternative breeding sites are scarce. Surprisingly, no 300-m parameters were strongly associated with salamander egg-mass abundance, whereas several landscape parameters were. In suburbanizing areas, it is at least as important to consider landscape-scale road density as to consider hydroperiod when designing conservation plans for these species. Furthermore, both isolated and clustered pools provide these species important habitat and may require protection. Finally, the conceptual framework for spotted-salamander management must be expanded so that spatial configuration at the landscape scale becomes a regular, integrated component of conservation planning for this species.  相似文献   

9.

Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape.

  相似文献   

10.
Habitat fragmentation, patch quality and landscape structure are important predictors for species richness. However, conservation strategies targeting single species mainly focus on habitat patches and neglect possible effects of the surrounding landscape. This project assesses the impact of management, habitat fragmentation and landscape structure at different spatial scales on the distribution of three endangered butterfly species, Boloria selene, Boloria titania and Brenthis ino. We selected 36 study sites in the Swiss Alps differing in (1) the proportion of suitable habitat (i.e., wetlands); (2) the proportion of potential dispersal barriers (forest) in the surrounding landscape; (3) altitude; (4) habitat area and (5) management (mowing versus grazing). Three surveys per study site were conducted during the adult flight period to estimate occurrence and density of each species. For the best disperser B. selene the probability of occurrence was positively related to increasing proportion of wetland on a large spatial scale (radius: 4,000 m), for the medium disperser B. ino on an intermediate spatial scale (2,000 m) and for the poorest disperser B. titania on a small spatial scale (1,000 m). Nearby forest did not negatively affect butterfly species distribution but instead enhanced the probability of occurrence and the population density of B. titania. The fen-specialist B. selene had a higher probability of occurrence and higher population densities on grazed compared to mown fens. The altitude of the habitat patches affected the occurrence of the three species and increasing habitat area enhanced the probability of occurrence of B. selene and B. ino. We conclude that, the surrounding landscape is of relevance for species distribution, but management and habitat fragmentation are often more important. We suggest that butterfly conservation should not focus only on a patch scale, but also on a landscape scale, taking into account species-specific dispersal abilities.  相似文献   

11.
Home range size is a result of individual movements and the spatial distribution of a population. While body size, sex, and age are known to influence the area over which an animal ranges, it remains uncertain how landscape heterogeneity influences home range size. We examined elk (Cervus elaphus) seasonal home range sizes in relation to the quantity and spatial heterogeneity of forage biomass, forest cover, topography, snow–water equivalents, and landscape structure in three study landscapes: Yellowstone National Park, Wyoming, USA; eastern slopes of the Canadian Rockies, Alberta; and northern Wisconsin, USA. We used a 95% fixed kernel estimator to measure the home range size and location of all elk. To identify the scales at which important factors influenced home range sizes, we quantified environmental variables within the estimated home range polygon and within concentric circles with radii of 1000, 2000, 3000, 4000, and 5000 m from the home range center. Results indicate that there was an inverse relationship between forage biomass and summer and winter home range sizes in Alberta and Wisconsin, however the relationship was positive in Yellowstone. The size of summer and winter home ranges was positively related to percent forest cover; however this relationship was significant only when forest cover was quantified within the home range polygon or radii that were greater than or equal to 3000 m. Winter home ranges also had a positive relationship with snow–water equivalents. The predictive strength of summer home range models was greatest when landscape variables were quantified within the concentric circles with a radius of 3000 m or more, whereas the predictive strength of the winter models was greatest within the estimated home range polygon. Results suggest that elk ranging patterns reflected complex trade-offs that affect foraging, group dynamics, movement energetics, predation avoidance and thermal regulation. The multi-scale analysis indicates that elk based home ranging decisions on an area equal to their home range, but areas outside of the estimated home range were also important.  相似文献   

12.
Anthropogenic habitat loss and fragmentation are the principle factors causing declines of grassland birds. Declines in burrowing owl (Athene cunicularia) populations have been extensive and have been linked to habitat loss, primarily the decline of black-tailed prairie dog (Cynomys ludovicianus) colonies. Development of habitat use models is a research priority and will aid conservation of owls inhabiting human-altered landscapes. From 2001 to 2004 we located 160 burrowing owl nests on prairie dog colonies on the Little Missouri National Grassland in North Dakota. We used multiple linear regression and Akaike’s Information Criterion to estimate the relationship between cover type characteristics surrounding prairie dog colonies and (1) number of owl pairs per colony and (2) reproductive success. Models were developed for two spatial scales, within 600 m and 2,000 m radii of nests for cropland, crested wheatgrass (Agropyron cristatum), grassland, and prairie dog colonies. We also included number of patches as a metric of landscape fragmentation. Annually, fewer than 30% of prairie dog colonies were occupied by owls. None of the models at the 600 m scale explained variation in number of owl pairs or reproductive success. However, models at the 2,000 m scale did explain number of owl pairs and reproductive success. Models included cropland, crested wheatgrass, and prairie dog colonies. Grasslands were not included in any of the models and had low importance values, although percentage grassland surrounding colonies was high. Management that protects prairie dog colonies bordering cropland and crested wheatgrass should be implemented to maintain nesting habitat of burrowing owls.  相似文献   

13.
Only recently has the influence of landscape structure on habitat use been a research focus in wetland systems. During non-breeding periods when food can be locally limited, wetland spatial pattern across a landscape may be of great importance in determining wetland use. We studied the influence of landscape structure on abundances of wintering Dunlin (Calidris alpina) and Killdeer (Charadrius vociferus) observed on wetlands in the agricultural Willamette Valley of Oregon, USA, during two winters (1999–2000, 2000–2001) of differing rainfall. We examined (1) shorebird use within a sample of 100 km2 regions differing in landscape structure (hectares of shorebird habitat [wet, unvegetated]) and (2) use of sites differing in landscape context (area of shorebird habitat within a species-defined radius). For use of sites, we also assessed the influence of two local characteristics: percent of soil exposed and area of wet habitat. We analyzed data using linear regression and information-theoretic modeling. During the dry winter (2000–2001), Dunlin were attracted to regions with more wetland habitat and their abundances at sites increased with greater area of shorebird habitat within both the site and the surrounding landscape. In contrast, Dunlin abundances at sites were related to availability of habitat at only a local scale during the wet winter (1999–2000). Regional habitat availability was of little importance in predicting Killdeer distributions, and Killdeer site use appeared unrelated to habitat distributions at both landscape and local scales. Results suggest prioritizing sites for conservation that are located in areas with high wetland coverage.  相似文献   

14.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

15.
To further our understanding of invasive species?? novel distributions, knowledge of invasive species?? relationships with environmental variables at multiple spatial scales is paramount. Here, we investigate which environmental variables and which spatial scales best explain the invasive mute swan??s (Cygnus olor) distribution in southern Ontario (Canada). Specifically we model mute swan distribution changes according to ecologically-relevant spatial scales: average territory size radius, 140?m; median dispersal distance of cygnets, 3,000?m; and average activity distance of males, 8,000?m. For individual spatial scales, global models using variables measured at each particular scale result in the highest Akaike weights, AUC, and Cohen??s Kappa values. Yet composite models (models combining variables measured at different scales) elicit the best models, as determined by higher Akaike weights and high AUC and Cohen??s Kappa values. Overall, percent water, waterbody perimeter density, temperature, precipitation, and road density are positively correlated with mute swan distribution, while percent forest and elevation are negatively correlated at all scales of analysis. Only percent water and annual precipitation are more influential in determining mute swan distribution at the 3,000 and 8,000?m zone scales than the territory scale. While most species distribution models are performed at a single scale, the results of our study suggest that composite models reflecting a species?? ecological needs provide models of better fit with similar, if not better, predictive accuracy. When analyzing species distributions, we also recommend that ecologists consider the scale of the underlying landscape processes and the effect that this may have on their modelling outcomes.  相似文献   

16.

Context

Primates are an important component of biodiversity in tropical regions. However, many studies on the effects of habitat change on primates ignore the relative influence of landscape composition and configuration.

Objectives

This study addresses the question: how important are landscape-scale forest area and composition relative to patch-scale (1–1080 ha) and site-scale (transect of 1 km) habitat variables for the occupancy and abundance of four primate species in the Colombian Llanos.

Methods

Using a randomly stratified survey design, 81 fragments were surveyed for primate occupancy and abundance. We used zero-inflated models to test the relative influence of landscape-scale, patch-scale and site-scale variables on occupancy and abundance for each species. A 95% confidence set of models was constructed using the cumulative Akaike weight for each model and the relative importance of each set of variables calculated for each primate species.

Results

Occupancy was determined by a combination of site-scale, patch-scale and landscape-scale variables but this varied substantially among the primate species.

Conclusion

Our study highlights the importance of managing primates at a range of scales that considers the relative importance of site-, patch- and landscape-scale variables.
  相似文献   

17.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

18.
Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape.  相似文献   

19.
Understanding species-diversity patterns in heterogeneous landscapes invites comprehensive research on how scale-dependent processes interact across scales. We used two common beetle families (Tenebrionidae, detrivores; Carabidae, predators) to conduct such a study in the heterogeneous semi-arid landscape of the Southern Judean Lowland (SJL) of Israel, currently undergoing intensive fragmentation. Beetles were censused in 25 different-sized patches (500–40,000 m2). We used Fisher’s α and non-parametric extrapolators to estimate species diversity from 11,125 individuals belonging to 56 species. Patch characteristics (plant species diversity and cover, soil cover and degree of stoniness) were measured by field transects. Spatial variables (patch size, shape, physiognomy and connectivity) and landscape characteristics were analyzed by GIS and remote-sensing applications. Both patch-scale and landscape-scale variables affected beetle species diversity. Path-analysis models showed that landscape-scale variables had the strongest effect on carabid diversity in all patches. The tenebrionids responded differently: both patch-scale and landscape-scale variables affected species diversity in small patches, while mainly patch-scale variables affected species diversity in large patches. Most of the paths affected species diversity both directly and indirectly, combining the effects of both patch-scale and landscape-scale variables. These results match the biology of the two beetle families: Tenebrionidae, the less mobile and more site-attached family, responded to the environment in a fine-grained manner, while the highly dispersed Carabidae responded to the environment in a coarse-grained manner. We suggest that understanding abiotic and biotic variable interactions across scales has important consequences for our knowledge of community structure and species diversity patterns at large spatial scales.  相似文献   

20.
Arid Australia supports extraordinary numbers of waterbirds. We show that the solution to this seeming paradox lies in considering the availability of temporary wetland habitat in the context of the birds dispersal capability and fluctuations in the abundance of wetlands in time and space. For species with large dispersal capabilities, the Lake Eyre Basin of central Australia, amongst the driest regions on the continent, has the highest habitat availability for waterbirds. Analyses of landscape structure show that the wetlands of the Lake Eyre Basin are highly inter-connected and linked by broad pathways to wetter parts of south-eastern Australia. These analyses illustrate that organism traits and patch dynamics affect realised habitat availability and indicate that the processes that structure populations may operate at much larger spatial scales than those at which humans usually seek to manage the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号