首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

2.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

3.
Disturbances and their interactions play major roles in sagebrush (Artemisia spp. L.) community dynamics. Although impacts of some disturbances, most notably fire, have been quantified at the landscape level, some have been ignored and rarely are interactions between disturbances evaluated. We developed conceptual state-and-transition models for each of two broad sagebrush groups—a warm-dry group characterized by Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) communities and a cool-moist group characterized by mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities. We used the Vegetation Dynamics Development Tool to explore how the abundance of community phases and states in each conceptual model might be affected by fire, insect outbreak, drought, snow mold, voles, sudden drops in winter temperatures (freeze-kill), livestock grazing, juniper (Juniperus occidentalis var. occidentalis Hook.) expansion, nonnative annual grasses such as cheatgrass (Bromus tectorum L.), and vegetation treatments. Changes in fuel continuity and loading resulted in average fire rotations of 12 yr in the warm-dry sagebrush group and 81 yr in the cool-moist sagebrush group. Model results in the warm-dry sagebrush group indicated postfire seeding success alone was not sufficient to limit the area of cheatgrass domination. The frequency of episodes of very high utilization by domestic livestock during severe drought was a key influence on community phase abundance in our models. In the cool-moist sagebrush group, model results indicated at least 10% of the juniper expansion area should be treated annually to keep juniper in check. Regardless, juniper seedlings and saplings would remain abundant.  相似文献   

4.
The role of fire in restoration of sagebrush plant communities remains controversial mainly because of paucity of information from long-term studies. Here, we examine 15-year post-fire responses of big sagebrush (Artemisia tridentata ssp wyomingensis) and broom snakeweed (Gutierrezia sarothrae), the two most abundant native shrubs at the John Day Fossil Beds National Monument, a protected area in north-central Oregon, USA. Fire effects were studied along gradients of topography and community type through time post-burn. Community types were distinguished as brush, plots dominated by big sagebrush and woodland, plots with a significant presence of Western juniper (Juniperus occidentalis) trees. Fire reduced big sagebrush cover in brush plots up to 100% and in woodland plots up to 86%. Broom snakeweed cover declined by 92% and 73% in brush plots and woodland plots, respectively. Big sagebrush did not show signs of recovery 15 years after burning regardless of topography and community type while broom snakeweed populations were clearly rebounding and prospering beyond pre-burn levels. Our results showed that an area initially dominated by big sagebrush (cover of big sagebrush 10-20%, cover of broom snakeweed 2-4%) dramatically shifted to an area dominated by broom snakeweed (cover of big sagebrush < 1%, cover of broom snakeweed 5%) in brush-dominated plots. Our results indicated that brush-dominated plots at lower elevation and southern exposures are the least post-fire resilient. We also observed a declining population of big sagebrush on unburned areas, suggesting the lack of post-fire recovery on burned areas was perhaps a result of low seeding potential by extant populations. Although more years of observation are required, these data indicate that recovery time, the encroachment of opportunistic competing shrubs, and the initial condition of vegetation are essential considerations by land managers when prescribing fire in big sagebrush communities.  相似文献   

5.
Big sagebrush (Artemisia tridentata Nutt.) plant communities often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation responses to a two-way chain harrow treatment and broadcast seeding of 12 herbaceous species at eight Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle & Young) sites. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950 ? 1980s and then seeded with introduced forage grasses (C-S), while three had not been exposed to this land-use legacy (non C-S). Our objective was to evaluate whether the C-S legacy influences the magnitude of vegetation change following contemporary treatment. Before treatment, C-S sites had lower sagebrush cover, higher dead sagebrush cover, and higher broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) cover than adjacent non C-S sites. Plant community change 3 years after treatment, determined with multivariate ordination analysis of species composition, varied between site histories, and response to treatment was most strongly correlated with reductions in sagebrush cover, increases in perennial grasses, and increases in 10 other herbaceous species—including some undesirable species and four that were seeded in 2010. Five years after treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased in C-S sites during the second and third years after treatment. In addition, perennial forb cover increased for C-S sites, while perennial grass biomass increased for non C-S sites. Our results emphasize that broad variability in plant community responses to sagebrush reduction and seeding is possible within the same ecological site classification and that legacy effects due to the combination of past cultivation and seeding should be considered when planning restoration projects, including the consideration that seeding may not always be necessary on C-S sites.  相似文献   

6.
Western juniper (Juniperus occidentalis Hook. var. occidentalis) has been expanding into sagebrush (ArtemisiaL. spp.) steppe over the past 130 yr in Idaho, Oregon, and California. Fuel characteristics and expected fire behavior and effects change as sagebrush steppe transitions into juniper woodlands. Little is currently known about how wildfire influences burn severity and ecosystem response in steppe altered by woodland conversion. In 2007, the Tongue-Crutcher Wildland Fire burned 18890 ha along a successional gradient ranging from sagebrush steppe to mature juniper woodlands, providing a unique opportunity to evaluate the effects of prefire vegetation on burn severity and ecosystem response across spatial scales. Plot-scale burn severity was evaluated with the composite burn index (CBI) in locations where prefire vegetation data were available, and landscape-scale burn severity was estimated via remotely sensed indices (differenced normalized burn ratio [dNBR] and relative differenced normalized burn ratio [RdNBR]). Strong positive relationships exist between CBI and remotely sensed burn severity indices in woodlands, whereas the relationships are weaker in steppe vegetation. Woodlands in late structural development phases, and sagebrush patches near developed woodlands, incurred higher burn severity than steppe and young woodlands. The results support the idea that a threshold exists for when juniper-encroached sagebrush steppe becomes difficult to restore. Implications for fire management in sagebrush/juniper ecosystems are discussed.  相似文献   

7.
Extensive woodland expansion in the Great Basin has generated concern regarding ecological impacts of tree encroachment on sagebrush rangelands and strategies for restoring sagebrush steppe. This study used rainfall (0.5 m2 and 13 m2 scales) and concentrated flow simulations and measures of vegetation, ground cover, and soils to investigate hydrologic and erosion impacts of western juniper (Juniperus occidentalis Hook.) encroachment into sagebrush steppe and to evaluate short-term effects of burning and tree cutting on runoff and erosion responses. The overall effects of tree encroachment were a reduction in understory vegetation and formation of highly erodible, bare intercanopy between trees. Runoff and erosion from high-intensity rainfall (102 mm · h?1, 13 m2 plots) were generally low from unburned areas underneath tree canopies (13 mm and 48 g · m?2) and were higher from the unburned intercanopy (43 mm and 272 g · m?2). Intercanopy erosion increased linearly with runoff and exponentially where bare ground exceeded 60%. Erosion from simulated concentrated flow was 15- to 25-fold greater from the unburned intercanopy than unburned tree canopy areas. Severe burning amplified erosion from tree canopy plots by a factor of 20 but had a favorable effect on concentrated flow erosion from the intercanopy. Two years postfire, erosion remained 20-fold greater on burned than unburned tree plots, but concentrated flow erosion from the intercanopy (76% of study area) was reduced by herbaceous recruitment. The results indicate burning may amplify runoff and erosion immediately postfire. However, we infer burning that sustains residual understory cover and stimulates vegetation productivity may provide long-term reduction of soil loss relative to woodland persistence. Simply placing cut-downed trees into the unburned intercanopy had minimal immediate impact on infiltration and soil loss. Results suggest cut-tree treatments should focus on establishing tree debris contact with the soil surface if treatments are expected to reduce short-term soil loss during the postcut understory recruitment period.  相似文献   

8.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting.  相似文献   

9.
Western juniper (Juniperus occidentalis Hook.) is a tree species occurring on 3.6 million ha in the northern Great Basin. This native species can be quite invasive, encroaching into sagebrush-grassland vegetation, forming woodlands, and dominating extensive landscapes. Control of encroaching juniper is often necessary and important. Efficacy of prescribed fire for western juniper control depends on many factors for which our understanding is still quite incomplete. This knowledge gap makes fire management planning for western juniper control more difficult and imprecise. Natural resource managers require a fire efficacy model that accurately predicts juniper mortality rates and is based entirely on predictors that are measurable prefire. We evaluated efficacy models using data from a fall prescribed fire conducted during 2002 in southwestern Idaho on mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) rangelands with early to midsuccessional juniper encroachment. A logistic regression model, which included vegetation cover type, tree height, fire type, and bare ground as predictors, accurately predicted (area under the receiver operating characteristic [ROC] curve [AUC] = 0.881 ± 0.128 standard deviation [SD]) the mortality rate for a random sample of western juniper trees marked and assessed prefire and 5 yr post fire. Trees occurring in an antelope bitterbrush (Purshia tridentata [Pursh] DC.) type, which had a heavy fuel load, were 8 times more likely to be killed by fire than trees in a mountain big sagebrush type, where loading was typically lighter. Probability of mortality decreased by 28.8% for each 1-meter increase in tree height. Trees exposed to head fire were 3 times as likely to be killed as those exposed to backing fire. Findings from this case study suggest that with just four factors which are readily quantifiable prefire, managers can accurately predict juniper mortality rate and thus make better informed decisions when planning prescribed fire treatments.  相似文献   

10.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma &lsqb;Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

11.
Western juniper (Juniperus occidentalis Hook.) encroachment and exotic annual grass (medusahead [Taeniatherum caput-medusae L. Nevski] and cheatgrass [Bromus tectorum L.]) invasion of sagebrush (Artemisia L.) communities decrease ecosystem services and degrade ecosystem function. Traditionally, these compositional changes were largely confined to separate areas, but more sagebrush communities are now simultaneously being altered by juniper and exotic annual grasses. Few efforts have evaluated attempts to restore these sagebrush communities. The Crooked River National Grassland initiated a project to restore juniper-encroached and annual grass-invaded sagebrush steppe using summer (mid-July) applied prescribed fires and postfire seeding. Treatments were unburned, burned, burned and seeded with a native seed mix, and burned and seeded with an introduced seed mix. Prescribed burning removed all juniper and initially reduced medusahead cover but did not influence cheatgrass cover. Neither the native nor introduced seed mix were successful at increasing large bunchgrass cover, and 6 yr post fire, medusahead cover was greater in burned treatments compared with the unburned treatment. Large bunchgrass cover and biological soil crusts were less in treatments that included burning. Exotic forbs and bulbous bluegrass (Poa bulbosa L.), an exotic grass, were greater in burned treatments compared with the unburned treatment. Sagebrush communities that are both juniper encroached and exotic annual grass invaded will need specific management of both juniper and annual grasses. We suggest that additional treatments, such as pre-emergent herbicide control of annuals and possibly multiple seeding events, are necessary to restore these communities. We recommend an adaptive management approach in which additional treatments are applied on the basis of monitoring data.  相似文献   

12.
Western juniper expansion is one of the largest threats to conserving sagebrush steppe ecosystems in the northwestern United States. Juniper expansion has degraded the sagebrush steppe by altering fire regimes and outcompeting shrubs and herbaceous vegetation for limited resources. We characterized the effect of juniper removal in a severely degraded sagebrush steppe habitat for 3 yr following juniper cutting. In addition, we measured the effect of low-intensity seasonal grazing on plant community recovery through cattle exclusion treatments. We monitored plant community composition (exotic annual grasses, preferred grasses, preferred forbs, and shrubs); fuel loads; and juniper recruitment in a factorial design of juniper removal and grazing exclusion. We found that although there were significant differences between cut and uncut juniper treatments, there were no consistent trends across all 3 yr. Our results suggest that other factors, such as timing of precipitation, may also have strong short-term effects on plant community composition. We detected no significant grazing effects during the study period, suggesting the current grazing regime is appropriate for the area. The cutting of juniper increased total fuel loads and herbaceous fuel loads. Compared with open interspace, a twofold increase in juniper seedlings and saplings was detected beneath juniper piles, which will act as sources for future juniper encroachment.  相似文献   

13.
The optimal frequency of tebuthiuron (N-[5-(dimetylethyl)-1,3,4-thiadiazol-2yl]-N,N′-dimethylurea) treatments was investigated for Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young) when added forage for livestock and wildlife are considered to be the economic benefit of the treatment. Data collected at 8 northwest New Mexico study sites were used to define key relationships for the economic analysis. This long-lived sagebrush control practice was found to be a viable investment for landowners who participate in available cost-share programs. At productive sites, where average herbaceous production increased to over 700 kg/ha following big sagebrush control, the economic value of added forage justified the total cost of the herbicide treatment. Tebuthiuron rates higher than 0.5 kg active ingredient/ha lengthened the expected life of the brush control treatment, but the extended life did not justify the added cost. The threshold abundance of sagebrush needed for economical control was found to be variable, depending on treatment cost, study site, and the economic value of forage. With a 50:50 cost-share arrangement and with forage valued at $7/AUM, the economic sagebrush canopy threshold from the livestock grazing perspective was estimated to range between 6% and 14%, depending on site productivity. A second brush control treatment would optimally be implemented before forage production was fully depleted by the recovering brush canopy. Because some native fauna are closely tied to big sagebrush plant communities and benefit from the shrubs’ presence, the trade-off in the desired abundance of big sagebrush must be weighed between economic considerations and other resource values of interest.  相似文献   

14.
Land managers across the western United States are faced with selecting and applying tree-removal treatments on pinyon (Pinus spp.) and juniper (Juniperus spp.) woodland-encroached sagebrush (Artemisia spp.) rangelands, but current understanding of long-term vegetation and hydrological responses of sagebrush sites to tree removal is inadequate for guiding management. This study applied a suite of vegetation and soil measures (0.5 ? 990 m2), small-plot rainfall simulations (0.5 m2), and overland flow experiments (9 m2) to quantify the effects of mechanical tree removal (tree cutting and mastication) on vegetation, runoff, and erosion at two mid- to late-succession woodland-encroached sagebrush sites in the Great Basin, United States, 9 yr after treatment. Low amounts of hillslope-scale shrub (3 ? 15%) and grass (7 ? 12%) canopy cover and extensive intercanopy (area between tree canopies) bare ground (69 ? 88% bare, 75% of area) in untreated areas at both sites facilitated high levels of runoff and sediment from high-intensity (102 mm ? h? 1, 45 min) rainfall simulations in interspaces (~ 45 mm runoff, 59 ? 381 g ? m? 2 sediment) between trees and shrubs and from concentrated overland flow experiments (15, 30, and 45 L ? min? 1, 8 min each) in the intercanopy (371 ? 501 L runoff, 2 342 ? 3 015 g sediment). Tree cutting increased hillslope-scale density of sagebrush by 5% and perennial grass cover by twofold at one site while tree cutting and mastication increased hillslope-scale sagebrush density by 36% and 16%, respectively, and perennial grass cover by threefold at a second more-degraded (initially more sparsely vegetated) site over nine growing seasons. Cover of cheatgrass (Bromus tectorum L.) was < 1% at the sites pretreatment and 1 ? 7% 9 yr after treatment. Bare ground remained high across both sites 9 yr after tree removal and was reduced by treatments solely at the more degraded site. Increases in hillslope-scale vegetation following tree removal had limited impact on runoff and erosion for rainfall simulations and concentrated flow experiments at both sites due to persistent high bare ground. The one exception was reduced runoff and erosion within the cut treatments for intercanopy plots with cut-downed-trees. The cut-downed-trees provided ample litter cover and tree debris at the ground surface to reduce the amount and erosive energy of concentrated overland flow. Trends in hillslope-scale vegetation responses to tree removal in this study demonstrate the effectiveness of mechanical treatments to reestablish sagebrush steppe vegetation without increasing cheatgrass for mid- to late-succession woodland-encroached sites along the warm-dry to cool-moist soil temperature ? moisture threshold in the Great Basin. Our results indicate improved hydrologic function through sagebrush steppe vegetation recruitment after mechanical tree removal on mid- to late-succession woodlands can require more than 9 yr. We anticipate intercanopy runoff and erosion rates will decrease over time at both sites as shrub and grass cover continue to increase, but follow-up tree removal will be needed to prevent pinyon and juniper recolonization. The low intercanopy runoff and erosion measured underneath isolated cut-downed-trees in this study clearly demonstrate that tree debris following mechanical treatments can effectively limit microsite-scale runoff and erosion over time where tree debris settles in good contact with the soil surface.  相似文献   

15.
Juniper encroachment into otherwise treeless shrub lands and grasslands is one of the most pronounced environmental changes observed in rangelands of western North America in recent decades. Most studies on juniper change are conducted over small areas, although encroachment is occurring throughout regions. Whether changes in juniper cover can be assessed over large areas with the use of long-term satellite data is an important methodological question. A fundamental challenge in using satellite imagery to determine tree abundance in rangelands is that a mix of trees, sagebrush, and herbaceous cover types can occur within a given image pixel. Our objective was to determine if spectral mixture analysis could be used to estimate changes in Rocky Mountain juniper (Juniperus scopulorum Sarg) and Utah juniper (Juniperus osteosperma [Torr.] Little) cover over 20 yr and 20000 ha in southeast Idaho with the use of Landsat imagery. We also examined the spatial patterns and variation of encroachment within our study area using Geographic Information Systems–based data sets of grazing use, land-cover types, and topography. Juniper cover determined from 15-cm-resolution digital aerial orthophotography was used to train and validate juniper presence/absence classification in 1985 and 2005 Landsat images. The two classified images were then compared to detect changes in juniper cover. The estimated rate of juniper encroachment over our study area was 22–30% between 1985 and 2005, consistent with previous ground-based studies. Moran’s I analysis indicated that juniper encroachment pattern was spatially random rather than clustered or uniform. Juniper encroachment was significantly greater in grazed areas (P = 0.02), and in particular in grazed shrub land cover type (P = 0.06), compared to ungrazed areas. Juniper encroachment was also greater on intermediate slopes (10–35% slopes) compared to steeper or flatter terrain, and encroachment was somewhat less on north-facing (P = 0.03) and more on west-facing (P = 0.02) slopes compared to other aspects.  相似文献   

16.
Western Juniper (Juniperus occidentalis Hook.) has greatly expanded in the past 150 + years and now dominates over 3.6 million ha of rangeland in the Intermountain Western United States. The impacts of juniper encroachment on critical ecohydrological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as the greater sage grouse (Centrocercus urophasianus), remain poorly understood. The goal of this study is to better understand how juniper encroachment affects water availability for ecohydrologic processes and associated wildlife habitat in snow-dominated sagebrush (Artemisia spp.) steppe ecosystems. A 6-yr combined measurement and modeling study is conducted to explore differences in snow distribution, water availability, and annual water balances between juniper-dominated and sagebrush-dominated catchments. Although there is large interannual variability in both measured weather data and modeled hydrologic fluxes during the study, results indicate that juniper-dominated catchments have greater peak accumulations of snow water equivalent, earlier snow melt, and less streamflow relative to sagebrush-dominated catchments. Water delivery is delayed by an average of 9 days in the sagebrush-dominated scenario compared with the juniper-dominated scenario as a result of increased water storage in snow drifts. The delayed water input to sagebrush-dominated ecosystems in typical water years has wide-ranging implications for available surface water, soil water, and vegetation dynamics associated with wildlife habitat for sagebrush obligates such as sage grouse. Results from this study imply that the retention of high-elevation, sagebrush-dominated landscapes may become crucial for sage grouse habitat management if mid- and low-elevation precipitation continues to transition from snow to rain dominated.  相似文献   

17.
Within the sagebrush steppe ecosystem, sagebrush plants influence a number of ecosystem properties, including nutrient distribution, plant species diversity, soil moisture, and temperature, and provide habitat for a wide variety of wildlife species. Recent increases in frequency and size of wildfires and associated annual grass expansion within the Wyoming big sagebrush alliance have increased the need for effective sagebrush restoration tools and protocols. Our objectives were to quay the success of Wyoming big sagebrush transplants relative to transplant stock (nursery seedlings vs. wildlings) across different ecological sites and vegetation types and to test the hypothesis that reduction of herbaceous vegetation would increase survival of transplanted sagebrush. We used a randomized block (reps = 5) design at each of three sites—1) cheatgrass dominated, 2) native plant dominated, and 3) crested wheatgrass dominated—near Elko, Nevada. Treatments included plant stock (nursery stock or locally harvested wildlings) and herbicide (glyphosate) to reduce competition from herbaceous vegetation. Transplants were planted in the spring of 2009 and 2010 and monitored for survival. Data were analyzed for site and treatment effects using mixed-model ANOVA. Surviving plant density at and 2 yr postplanting was generally highest (up to 3-fold) on the native site (P < 0.05). Density of surviving transplants was almost 3-fold higher for nursery stock on most sites for the 2009 planting, but differences in survival by planting stock were minimal for the 2010 planting. Glyphosate application increased surviving plant density up to 300% (depending on site) for both years of planting. High labor and plant material investments (relative to traditional drilling or broadcasting) may limit the size of projects for which sagebrush transplants are practical, but these costs may be partially offset by high success relative to traditional methods. Our data indicate that sagebrush transplants can be effective for establishing sagebrush on depleted sites.  相似文献   

18.
Fire plays a large role in structuring sagebrush ecosystems; however, we have little knowledge of how vegetation changes with time as succession proceeds from immediate postfire to mature stands. We sampled at 38 sites in southwest Montana dominated by 3 subspecies of big sagebrush (Artemisia tridentata Nutt.). At each site we subjectively located 1 sample plot representing the burned area and an unburned macroplot in similar, adjacent, unburned vegetation. Canopy cover of sagebrush was estimated, and plants were counted in 10 microplots. Age and height of randomly chosen sagebrush plants in each size class were determined from 5 microplots. Average postfire time to full recovery of mountain big sagebrush (ssp. vasseyana [Rydb.] Beetle) canopy cover was 32 years, shorter for basin (ssp. tridentata) and much longer for Wyoming (ssp. wyomingensis Beetle & Young) big sagebrush. Height recovered at similar rates. There was no difference in canopy cover or height recovery between prescribed fires and wildfires in stands of mountain big sagebrush. We found no relationship between mountain big sagebrush canopy cover recovery and annual precipitation, heat load, or soil texture. Nearly all unburned sagebrush macroplots were uneven-aged, indicating that recruitment was not limited to immediate postfire conditions in any of the subspecies. Average canopy cover of three-tip sagebrush (A. tripartita Rydb.) did not increase following fire, and many three-tip sagebrush plants established from seed instead of sprouting. Our results suggest that the majority of presettlement mountain big sagebrush stands would have been in early to midseral condition in southwest Montana assuming a mean fire interval of 25 years. Only long fire-return intervals will allow stands dominated by Wyoming big sagebrush to remain on the landscape in our study area. We speculate that effects of site-specific factors conducive to sagebrush recovery are small compared to stochastic effects such as fire.  相似文献   

19.
20.
Restoration of non-sprouting shrubs after wildfire is increasingly becoming a management priority. In the western U.S., Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) restoration is a high priority, but sagebrush establishment from seed is sporadic. In contrast, planting seedlings often successfully restores sagebrush, but is expensive and time consuming. After planting, hence, there is a need to protect the investment from disturbances such as fire that will erase gains in sagebrush recovery. Grazing is likely the only tool that can be applied feasibly across the landscape to decrease wildfire probability, but there are concerns that grazing and associated activities (e.g. trampling) may negatively impact sagebrush seedlings. We investigated effects of grazing by cattle, applied as a fine fuel management strategy, on planted sagebrush seedlings at five blocks for five years. Grazing substantial reduced exotic annual grasses, large perennial bunchgrasses, and total herbaceous cover, thus achieving fuel management goals. Sagebrush cover and reproductive efforts were almost 2-fold greater in grazed compared to non-grazed areas in the final year of the study. This suggests that grazing favored sagebrush, a generally unpalatable shrub, recovery, likely by reducing competition from highly palatable herbaceous vegetation. Density of sagebrush, however, was similar between grazed and non-grazed areas. This research demonstrates that grazing can be strategically applied to reduce the probability of wildfire in areas with planted sagebrush seedlings; thereby, protecting the investment in sagebrush recovery. With more refinement, it also appears that grazing can be utilized to accelerate the recovery of sagebrush and potentially other woody vegetation habitat by modifying the competitive relationship between herbaceous and woody vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号