首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

To assess the temporal effects of a single fentanyl intravenous (IV) bolus on the minimum anesthetic concentration (MAC) of isoflurane in chickens and to evaluate the effects of this combination on heart rate (HR) and rhythm, systemic arterial pressures (sAP) and ventilation.

Study design

Prospective experimental trial.

Animals

Seventeen adult chickens weighing 1.8 ± 0.2 kg.

Methods

Individual isoflurane MAC for 17 chickens was previously determined using the bracketing method. Chickens were anesthetized with isoflurane to evaluate the effects of a single IV fentanyl bolus (10 or 30 μg kg?1) on isoflurane MAC over time using the up-and-down method. Ventilation was controlled. The isoflurane MAC reduction was estimated by logistic regression at 5 and 15 minutes after fentanyl administration. In the second phase, seven chickens were anesthetized with isoflurane, and fentanyl was administered (30 μg kg?1) IV over 1 minute during spontaneous ventilation and HR and rhythm, sAP and ventilation variables were measured.

Results

At 5 minutes after IV administration of fentanyl (10 or 30 μg kg?1), isoflurane MAC was significantly reduced by 17.6% (6.1–29.1%) [logistic regression estimate (95% Wald confidence interval)] and 42.6% (13.3–71.9%), respectively. Isoflurane MAC reduction at 15 minutes after IV administration of fentanyl (10 or 30 μg kg?1) was 6.2% (?0.6 to 12.9%) and 13.2% (?0.9 to 27.3%), respectively; however, this reduction was not significant. No clinically significant cardiopulmonary changes or arrhythmias were detected after the administration of fentanyl (30 μg kg?1).

Conclusions and clinical relevance

Administration of a single fentanyl bolus induced a dose-dependent and short-lasting reduction in isoflurane MAC. The higher dose induced no significant cardiopulmonary depression in isoflurane-anesthetized chickens during spontaneous ventilation. In chickens anesthetized with isoflurane, the clinical usefulness of a single fentanyl bolus is limited by its short duration of effect.  相似文献   

2.

Objective

To characterize the cardiovascular effects of dexmedetomidine, with or without MK-467, following intravenous (IV) administration in cats.

Study design

Prospective Latin square experimental study.

Animals

Six healthy adult purpose-bred cats.

Methods

Cats were anesthetized with desflurane in oxygen for instrumentation with a carotid artery catheter and a thermodilution catheter in the pulmonary artery. One hour after discontinuation of desflurane, cats were administered dexmedetomidine (25 μg kg–1), MK-467 (600 μg kg–1), or dexmedetomidine (25 μg kg–1) and MK-467 (600 μg kg–1). All treatments were administered IV as a bolus. Cardiovascular variables were measured prior to drug administration and for 8 hours thereafter. Only data from the dexmedetomidine and dexmedetomidine–MK-467 treatments were analyzed.

Results

Dexmedetomidine produced significant decreases in heart rate, cardiac index and right ventricular stroke work index, and significant increases in arterial blood pressure, central venous pressure, pulmonary artery pressure and systemic vascular resistance index. Dexmedetomidine combined with MK-467 resulted in significant but transient decrease in blood pressure and right ventricular stroke work index.

Conclusion and clinical relevance

Following IV co-administration, MK-467 effectively attenuated dexmedetomidine-induced cardiovascular effects in cats. The drug combination resulted in transient reduction in arterial blood pressure, without causing hypotension.  相似文献   

3.

Objective

To assess and compare the sedative and antinociceptive effects of four dosages of dexmedetomidine in donkeys.

Study design

Randomized, controlled, crossover, Latin-square, blinded study.

Animals

Six healthy, castrated, adult, standard donkeys.

Methods

Dexmedetomidine (2, 3, 4 and 5 μg kg?1; D2, D3, D4 and D5), acepromazine (0.1 mg kg?1) and saline were administered intravenously to each donkey and a 1 week interval was allowed between successive trials on each animal. Sedation scores (SS) and head heights above ground (HHAG) were used to assess sedation and mechanical nociceptive threshold (MNT) testing to assess antinociception over 120 minutes post-treatment. Areas under the curve (AUC) for 0–30, 30–60 and 60–120 minutes were computed to compare the effect of treatments.

Results

SS-AUC0–30 values were larger for D4 and D5, and SS-AUC30–60 values were larger for D5 than for saline. All dexmedetomidine treatments produced lower HHAG-AUC0–30 and HHAG-AUC30–60 values, and acepromazine produced lower HHAG AUC60–120 values than did saline. For MNT, D3, D4 and D5 increased AUC0–30 and AUC30–60 values compared with saline and also AUC0–30 values compared with D2 and acepromazine. Smaller MNT-AUC30–60 values were obtained with D2 than with D4 and D5, with D3 than with D5, and with acepromazine than with D4 and D5.

Conclusions and clinical relevance

Dexmedetomidine induced sedation and dosage-dependent mechanical antinociception. Larger dexmedetomidine dose rates were required to induce antinociception than sedation. Furthermore, the antinociception induced by dexmedetomidine was of shorter duration than its sedation. For minor painful procedures on standing donkeys, D5 may be clinically useful to provide sedation and analgesia.  相似文献   

4.

Objective

To determine the frequency of provision and main providers (veterinary surgeons, nurses or trainees) of manual ventilation in UK veterinary practices. Furthermore, to determine the variation in peak inspiratory (inflation) pressure (PIP), applied to a lung model during manual ventilation, by three different groups of operators (inexperienced, experienced and specialist), before and after training.

Study design

Questionnaire survey, lung model simulator development and prospective testing.

Methods

Postal questionnaires were sent to 100 randomly selected veterinary practices. The lung model simulator was manually ventilated in a staged process over 3 weeks, with and without real-time biometric feedback (PIP display), by three groups of volunteer operators: inexperienced, experienced and specialist.

Results

The questionnaires determined that veterinary nurses were responsible for providing the majority of manual ventilation in veterinary practices, mainly drawing on theoretical knowledge rather than any specific training. Thoracic surgery and apnoea were the main reasons for provision of manual ventilation. Specialists performed well when manually ventilating the lung model, regardless of feedback training. Both inexperienced and experienced operators showed significant improvement in technique when using the feedback training tool: variation in PIP decreased significantly until operators provided manual ventilation at PIPs within the defined optimum range. Preferences for different forms of feedback (graphical, numerical or scale display), revealed that the operators’ choice was not always the method which gave least variation in PIP.

Conclusions and clinical relevance

This study highlighted a need for training in manual ventilation at an early stage in veterinary and veterinary nursing careers and demonstrated how feedback is important in the process of experiential learning. A manometer device which can provide immediate feedback during training, or indeed in a real clinical setting, should improve patient safety.  相似文献   

5.

Objectives

Neostigmine is routinely used to reverse non-depolarizing neuromuscular block. Given its indirect mechanism, a plateau may exist whereby increasing doses of neostigmine do not result in clinical benefit. This study was designed to measure the speed of reversal of vecuronium-induced neuromuscular block in isoflurane-anesthetized dogs after the administration of three doses of neostigmine as used in clinical practice.

Study design

Prospective, crossover, randomized study.

Animals

Seven adult, mixed-breed dogs with a mean ± standard deviation (SD) age of 2.0 ± 0.8 years and weight of 19.1 ± 9.1 kg.

Methods

Dogs were anesthetized on three occasions with isoflurane and administered vecuronium (0.1 mg kg–1) intravenously (IV). The train-of-four (TOF) ratio was measured on the pelvic limb with acceleromyography. When the second twitch of the TOF had returned spontaneously, atropine (0.03 mg kg–1) and neostigmine (0.02, 0.04 or 0.07 mg kg–1) were administered IV. Time to reach a TOF ratio of ≥0.9 after neostigmine administration was recorded.

Results

Increasing the dose of neostigmine from 0.02 mg kg–1 to 0.04 mg kg–1 and 0.07 mg kg–1 resulted in significant reductions in mean ± SD reversal times (10.5 ± 2.3, 7.4 ± 1.1 and 5.4 ± 0.5 minutes, respectively) (p < 0.0001) and smaller coefficients of variation (22%, 15% and 10%, respectively).

Conclusions and clinical relevance

Increasing the dose of neostigmine from 0.02 mg kg–1 to 0.04 mg kg–1 and 0.07 mg kg–1 produced faster and less variable reversal of vecuronium-induced neuromuscular block in isoflurane-anesthetized dogs. No ceiling effect was observed at this dose range.  相似文献   

6.

Objective

To evaluate the onset and duration of hematological changes and the use of Doppler ultrasound (spleen) in dogs sedated with acepromazine or xylazine.

Study design

Clinical study.

Animals

A total of 24 mixed breed dogs aged 1–4 years and weighing 15–25 kg.

Methods

Dogs were randomly distributed into two groups: acepromazine group (AG) which were administered acepromazine (0.05 mg kg?1) intramuscularly and xylazine group (XG) administered xylazine (0.5 mg kg?1) intramuscularly. Sonographic evaluations (morphologic and hemodynamic splenic vascularization) and hematologic tests were performed before drug administration (baseline) and 5, 15, 30, 60, 120, 240, 360, 480 and 720 minutes after drug administration.

Results

A significant reduction occurred in erythrogram variables in AG at 15–720 minutes corresponding with a significant enlargement of the spleen. In XG, a significant reduction was observed in the erythrogram variables at 30–60 minutes without a significant enlargement of the spleen. Hilar diameter did not change over time in either group. Flow alterations were found only in the splenic artery in AG, with a decreased final diastolic velocity observed at 60–120 minutes.

Conclusions

Administration of acepromazine resulted in decreased red blood cell count, hemoglobin, packed cell volume and an increased diameter of the spleen. Xylazine administration resulted in similar hematologic changes but of smaller magnitude and duration and without splenic changes. The absence of significant changes in the Doppler flow parameters of the splenic artery and vein and the hilar diameter suggests that the splenomegaly that was observed in AG was not due to splenic vasodilation. No splenic sequestration occurred after xylazine administration.

Clinical relevance

The results indicate that acepromazine decreases the erythrocyte concentrations by splenic erythrocyte sequestration and concomitant splenomegaly. Xylazine can cause slight hematologic changes, but without splenic changes.  相似文献   

7.

Objective

To evaluate whether intratesticular and incisional ropivacaine infiltration produces sufficient intra- and postoperative analgesia for castrating dogs under sedation.

Study design

Randomized, blinded, controlled clinical study.

Animals

Twenty-three healthy dogs weighing 5.8–35.6 kg admitted for castration.

Methods

Dogs were sedated with medetomidine (0.01 mg kg?1), butorphanol (0.2 mg kg?1) and midazolam (0.2 mg kg?1) intramuscularly, and were randomly assigned to group R, 0.2–0.4 mL kg?1 of ropivacaine 0.5%, or group S, an equivalent volume of saline injected intratesticularly and along the incision line. If persistent motion was observed during surgery, sedation was considered to be insufficient and general anaesthesia was induced. Carprofen 2.2 mg kg?1 was administered postoperatively. Pain was evaluated in all dogs before sedation and postoperatively following atipamezole administration at 1, 2, 4, 8 and 24 hours using an interactive visual analogue scale (IVAS; 0–100), the Glasgow composite pain scale-short form (CMPS-SF; 0–24), and a mechanical algometer. Methadone 0.3 mg kg?1 was administered intravenously to dogs if IVAS >30 or CMPS-SF >4.

Results

There was no significant difference between groups for the number of dogs administered general anaesthesia. The time from the beginning of surgery to induction of general anaesthesia was significantly shorter [median (range)] in group S [6 (3–25) minutes] than in group R [56 (36–76) minutes]. At 8 hours IVAS was significantly higher in group S (14 ± 10) than in group R (6 ± 4).

Conclusions and clinical relevance

Intratesticular and incisional ropivacaine infiltration delayed the time to anaesthesia induction, and provided analgesia after castration performed under deep sedation in dogs. Intratesticular local anaesthesia can be an important part of the anaesthetic plan for castration.  相似文献   

8.

Objective

To characterize the pharmacokinetics of dexmedetomidine when administered as a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.

Study design

Experimental study.

Animals

A total of six healthy adult female New Zealand White rabbits.

Methods

Rabbits were anesthetized with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the anesthetic dose was reduced to 0.7 × MAC, and dexmedetomidine hydrochloride (20 μg kg?1) was infused IV over 5 minutes. Arterial blood samples were obtained immediately before and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240 and 360 minutes following termination of the infusion. Samples were transferred into tubes containing ethylenediaminetetraacetic acid and centrifuged immediately. The plasma was harvested and stored at –80 °C until analyzed. Concentrations of dexmedetomidine in plasma were determined by liquid chromatography mass spectrometry. Compartment models were fitted to the time and concentration data using nonlinear regression.

Results

A three-compartment model best fit the data set. Median volume of distribution at steady state and terminal half-life were 3169 mL kg?1 (range, 2182–3859 mL kg?1) and 80 minutes (range, 72–88 minutes), respectively.

Conclusions and clinical relevance

The pharmacokinetics of dexmedetomidine in isoflurane-anesthetized, healthy, New Zealand White rabbits were characterized in this study. Data from this study can be used to determine dosing regimens for dexmedetomidine in isoflurane-anesthetized rabbits.  相似文献   

9.

Objective

To examine changes in the distribution of ventilation and regional lung compliances in anaesthetized horses during the alveolar recruitment manoeuvre (ARM).

Study design

Experimental study in which a series of treatments were administered in a fixed order on one occasion.

Animals

Five adult Warmblood horses.

Methods

Animals were anaesthetized (xylazine, midazolam–ketamine, isoflurane), placed in dorsal recumbency and ventilated with 100% oxygen using peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) of 20 cmH2O and 0 cmH2O, respectively. Thoracic electrical impedance tomography (EIT), spirometry and routine anaesthesia monitoring were performed. At 90 minutes after induction of anaesthesia, PIP and PEEP were increased in steps of 5 cmH2O to 50 cmH2O and 30 cmH2O, respectively, and then decreased to baseline values. Each step lasted 10 minutes. Data were recorded and functional EIT images were created using three breaths at the end of each step. Arterial blood samples were analysed. Values for left-to-right and sternal-to-dorsal centre of ventilation (COV), lung compliances and Bohr dead space were calculated.

Results

Distribution of ventilation drifted leftward and dorsally during recruitment. Mean ± standard deviation (SD) values at baseline and highest airway pressures, respectively, were 49.9 ± 0.7% and 48.0 ± 0.6% for left-to-right COV (p = 0.009), and 46.3 ± 2.0% and 54.6 ± 2.0% for sternal-to-dorsal COV (p = 0.0001). Compliance of dependent lung regions and PaO2 increased, whereas compliance of non-dependent lung regions decreased during ARM and then returned to baseline (p < 0.001). Bohr dead space decreased after ARM (p = 0.007). Interestingly, PaO2 correlated to the compliance of the dependent lung (r2 = 0.71, p < 0.001).

Conclusions and clinical relevance

The proportion of tidal volume distributed to dependent and left lung regions increased during ARM, presumably as a result of opening atelectasis. Monitoring compliance of the dependent lung with EIT may substitute PaO2 measurements during ARM to identify an optimal PEEP.  相似文献   

10.

Objective

To compare the effects of controlled mechanical ventilation (CMV) and constant positive end-expiratory pressure (PEEP) and interposed recruitment manoeuvres (RMs) with those of CMV without PEEP on gas exchange during general anaesthesia and the early recovery period.

Study design

Prospective, randomized clinical trial.

Animals

A total of 48 Warmblood horses undergoing elective surgery in lateral (Lat) (n = 24) or dorsal (Dors) (n = 24) recumbency.

Methods

Premedication (romifidine), induction (diazepam and ketamine) and maintenance (isoflurane in oxygen) were identical in all horses. Groups Lat- CMV and Dors-CMV (each n = 12) were ventilated using CMV. Groups Lat-RM and Dors-RM (each n = 12) were ventilated using CMV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths with peak inspiratory pressure of 60 cmH2O, 80 cmH2O and 60 cmH2O, respectively). RMs were applied as required to maintain PaO2 at > 400 mmHg (> 53.3 kPa). Dobutamine was given to maintain mean arterial blood pressure at > 60 mmHg. Physiological parameters were recorded every 10 minutes. Arterial blood gases were measured intra- and postoperatively. Statistical analyses were conducted using analyses of variance (anova), t tests and the Mann–Whitney U-test.

Results

Horses in Dors-RM had higher PaO2 values [478 ± 35 mmHg (63.7 ± 4.6 kPa)] than horses in Dors-CMV [324 ± 45 mmHg (43.2 ± 6 kPa)] during anaesthesia and the early recovery period. There were no differences between horses in groups Lat-CMV and Lat-RM. Other measured parameters did not differ between groups.

Conclusions and clinical relevance

Ventilation with CMV, constant PEEP and interposed RM provided improved arterial oxygenation in horses in dorsal recumbency that lasted into the early recovery period, but had no benefit in horses in lateral recumbency. This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses, especially in dorsal recumbency.  相似文献   

11.

Objective

The aim of this study was to investigate whether an increased frequency of gastro-oesophageal reflux (GOR) is more common in large-sized, deep-chested dogs undergoing spinal surgery in sternal recumbency than in small-sized, barrelchested dogs.

Study design

Prospective, cohort study.

Animals

Nineteen small-sized, barrel-chested dogs (group B) and 26 large-sized, deep-chested dogs (group D).

Methods

All animals were premedicated with intramuscular (IM) acepromazine (0.05 mg kg?1) and pethidine (3 mg kg?1) IM. Anaesthesia was induced with intravenous sodium thiopental and maintained with halothane in oxygen. Lower oesophageal pH was monitored continuously after induction of anaesthesia. Gastro-oesophageal reflux was considered to have occurred whenever pH values > 7.5 or < 4 were recorded. If GOR was detected during anaesthesia, measures were taken to avoid aspiration of gastric contents into the lungs and to prevent the development of oesophagitis/oesophageal stricture.

Results

The frequency of GOR during anaesthesia was significantly higher in group D (6/26 dogs; 23.07%) than in group B (0/19 dogs; 0%) (p = 0.032). Signs indicative of aspiration pneumonia, oesophagitis or oesophageal stricture were not reported in any of the GOR cases.

Conclusions and clinical relevance

In large-sized, deep-chested dogs undergoing spinal surgery in sternal recumbency, it would seem prudent to consider measures aimed at preventing GOR and its potentially devastating consequences (oesophagitis/oesophageal stricture, aspiration pneumonia).  相似文献   

12.
13.

Objective

To characterize the pharmacokinetics of dexmedetomidine, MK-467 and their combination following intramuscular (IM) administration to cats.

Study design

Prospective randomized crossover experimental study.

Animals

A total of eight healthy adult male castrated cats aged 1–2 years.

Methods

Cats were administered dexmedetomidine (25 μg kg–1) IM (treatment D25IM) or intravenously (IV; treatment D25IV); MK-467 (600 μg kg–1) IM (treatment MK600IM) or IV (treatment MK600IV); or dexmedetomidine (25 μg kg–1) IM with 300, 600 or 1200 μg kg–1 MK-467 IM (treatments D25MK300IM, D25MK600IM and D25MK1200IM). D25MK600IM was the only combination treatment analyzed. Blood samples were obtained prior to drug administration and at various times for 5 hours (D25IV) or 8 hours (all other treatments) thereafter. Plasma dexmedetomidine and MK-467 concentrations were measured using liquid chromatography/mass spectrometry. Compartment models were fitted to the time–concentration data.

Results

A one-compartment model best fitted the time–plasma dexmedetomidine concentration data in cats administered D25IM, and the time–plasma MK-467 concentration data in cats administered MK600IM and D25MK600IM. A two-compartment model best fitted the time–plasma dexmedetomidine concentration data in cats administered D25IV and D25MK600IM, and the time–plasma MK-467 concentration data in cats administered MK600IV. Median (range) area under the time–concentration curve, absorption rate half-life, maximum concentration, time to maximum concentration and terminal half-life for dexmedetomidine in D25IM and D25MK600IM were 1129 (792–1890) and 924 (596–1649) ng minute mL–1, 4.4 (0.4–15.7) and 2.3 (0.2–8.0) minutes, 10.2 (4.8–16.9) and 17.8 (15.8–73.5) ng mL–1, 17.8 (2.6–44.9) and 5.2 (1.2–15.1) minutes and 62 (52–139) and 50 (31–125) minutes, respectively. Rate of absorption but not systemic exposure was significantly influenced by treatment. No significant differences were observed in MK-467 pharmacokinetic parameters in MK600IM and D25MK600IM.

Conclusions and clinical relevance

MK-467 significantly influenced the disposition of dexmedetomidine, whereas dexmedetomidine did not significantly affect the disposition of MK-467 when the drugs were coadministered IM.  相似文献   

14.

Objective

The evaluation of alfaxalone as a premedication agent and intravenous anaesthetic in pigs.

Study design

Prospective, clinical trial.

Animals

Nine healthy, 6–8-week-old female Landrace pigs weighing 22.2 ± 1.0 kg, undergoing epidural catheter placement.

Methods

All pigs were premedicated with 4 mg kg?1 alfaxalone, 40 μg kg?1 medetomidine and 0.4 mg kg?1 butorphanol administered in the cervical musculature. Sedation was subjectively scored by the same observer from 1 (no sedation) to 10 (profound sedation) prior to induction of anaesthesia with alfaxalone intravenously to effect. All pigs were maintained on alfaxalone infusions with the rate of administration adjusted to maintain appropriate anaesthetic depth. Quality of induction was scored from 1 (poor) to 3 (smooth) and basic cardiorespiratory variables were recorded every 5 minutes during anaesthesia. Results are reported as mean ± standard deviation or median (range) as appropriate.

Results

Sedation scores were 9 (7–10). Inductions were smooth in all pigs and cardiovascular variables remained within normal limits for the duration of anaesthesia. The induction dose of alfaxalone was 0.9 (0.0–2.3) mg kg?1. Three pigs did not require additional alfaxalone after premedication to facilitate intubation.

Conclusions and clinical relevance

Intramuscular alfaxalone in combination with medetomidine and butorphanol produced moderate to deep sedation in pigs. Alfaxalone produced satisfactory induction and maintenance of anaesthesia with minimal cardiovascular side effects. Appropriate monitoring of pigs premedicated with this protocol is required as some pigs may become anaesthetized after intramuscular administration of this combination of drugs.  相似文献   

15.

Objective

To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation.

Study design

Randomized, prospective clinical study.

Animals

In total, 41 calves scheduled for elective umbilical surgery.

Methods

Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg?1) and butorphanol (0.1 mg kg?1) intramuscularly and 10 minutes later lidocaine (2 mg kg?1; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg?1) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg?1) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups.

Results

The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5–4.5) mg kg?1 and 3.5 (2.5–3.5) mg kg?1, respectively, nor the induction quality differed significantly between the groups.

Conclusion and clinical relevance

A bolus of lidocaine (2 mg kg?1) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured.  相似文献   

16.

Objective

To determine the anti-inflammatory efficacy of choline in vivo and in vitro and to investigate the anti-inflammatory mechanisms of choline.

Study design

Randomized, controlled studies.

Animals

In vivo trials used 16 Romney sheep. In vitro experiments utilized RAW 264.7 mouse macrophage cells.

Methods

Hypoxaemia induced in 16 sheep by intravenous (IV) injection of 50 μg kg–1 xylazine, an α-2 agonist, was measured in sheep at 0, 1 and 4 minutes using arterial blood gas analysis with and without 50 mg kg–1 IV choline chloride premedication. Cell culture studies used enzyme-linked immunosorbent assay to measure the release of tumour necrosis factor (TNF-α) from lipopolysaccharide (LPS) stimulated macrophages with and without choline chloride premedication. TNF-α release was compared to thalidomide suppressed and untreated cells.

Results

Choline premedication in sheep mitigated a reduction in arterial partial pressure of oxygen (PaO2) but did not prevent development of clinically significant hypoxaemia. Decrease in mean PaO2 of choline treated sheep was 6.36 kPa (47.7 mmHg) compared to 9.81 kPa (73.6 mmHg) in control sheep. In vitro studies demonstrate that choline administered concurrent with LPS activation did not significantly suppress TNF-α expression but that treatment of cells with choline 10 minutes prior to LPS activation did significantly suppress TNF-α expression. Choline pretreated cells expressed 23.99 ± 4.52 ng mg–1 TNF-α while LPS only control cells expressed 33.83 ± 3.20 ng mg–1.

Conclusions

Choline is able to prevent macrophage activation in vitro when administered prior to LPS activation and may reduce hypoxaemia in sheep developing pulmonary oedema after xylazine administration. This effect requires premedication with choline.

Clinical relevance

Pharmacological manipulation of autonomic inflammatory responses holds promise for the treatment of inflammation. However, the complex cellular mechanisms involved in this reflex means that an adequate therapy should approach multiple pathways and mechanisms of the inflammatory response.  相似文献   

17.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

18.

Objective

To evaluate motor and sensory blockade of combining dexmedetomidine with ropivacaine, administered perineurally or systemically, for femoral and sciatic nerve blocks in conscious dogs.

Study design

Randomized, controlled, experimental study.

Animals

Seven healthy Beagle dogs, aged 3.3 ± 0.1 years and weighing 11.0 ± 2.4 kg.

Methods

Dogs were anesthetized with isoflurane on three separate occasions for unilateral femoral and sciatic nerve blocks and were administered the following treatments in random order: perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and intramuscular (IM) saline (0.2 mL kg–1) (GCON); perineural dexmedetomidine (1 μg mL–1) and ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM saline (0.2 mL kg–1) (GDPN); and perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM dexmedetomidine (1 μg mL–1, 0.2 mL kg–1) (GDIM). Nerve blocks were guided by ultrasound and electrical stimulation and dogs were allowed to recover from general anesthesia. Sensory blockade was evaluated by response to clamp pressure on the skin innervated by the saphenous/ femoral, common fibular and tibial nerves. Motor blockade was evaluated by observing the ability to walk and proprioception. Sensory and motor blockade were evaluated until their full recovery.

Results

No significant differences in onset time to motor and sensory blockade were observed among treatments. Duration of motor blockade was not significantly different among treatments; however, duration of tibial sensory blockade was longer in the GDPN than in the GDIM treatment.

Conclusions and clinical relevance

Although a longer duration of sensory blockade was observed with perineural dexmedetomidine, a significant increase compared with the control group was not established. Other concentrations should be investigated to verify if dexmedetomidine is a useful adjuvant to local anesthetics in peripheral nerve blocks in dogs.  相似文献   

19.

Objective

To determine plasma bupivacaine concentrations after retrobulbar or peribulbar injection of bupivacaine in cats.

Study design

Randomized, crossover, experimental trial with a 2 week washout period.

Animals

Six adult healthy cats, aged 1–2 years, weighing 4.6 ± 0.7 kg.

Methods

Cats were sedated by intramuscular injection of dexmedetomidine (36–56 μg kg?1) and were administered a retrobulbar injection of bupivacaine (0.75 mL, 0.5%; 3.75 mg) and iopamidol (0.25 mL), or a peribulbar injection of bupivacaine (1.5 mL, 0.5%; 7.5 mg), iopamidol (0.5 mL) and 0.9% saline (1 mL) via a dorsomedial approach. Blood (2 mL) was collected before and at 5, 10, 15, 22, 30, 45, 60, 120, 240 and 480 minutes after bupivacaine injection. Atipamezole was administered approximately 30 minutes after bupivacaine injection. Plasma bupivacaine and 3-hydroxybupivacaine concentrations were determined using liquid chromatography–mass spectrometry. Bupivacaine maximum plasma concentration (Cmax) and time to Cmax (Tmax) were determined from the data.

Results

The bupivacaine median (range) Cmax and Tmax were 1.4 (0.9–2.5) μg mL?1 and 17 (4–60) minutes, and 1.7 (1.0–2.4) μg mL?1, and 28 (8–49) minutes, for retrobulbar and peribulbar injections, respectively. In both treatments the 3-hydroxybupivacaine peak concentration was 0.05–0.21 μg mL?1.

Conclusions and clinical relevance

In healthy cats, at doses up to 2 mg kg?1, bupivacaine peak plasma concentrations were approximately half that reported to cause arrhythmias or convulsive electroencephalogram (EEG) activity in cats, and about one-sixth of that required to produce hypotension.  相似文献   

20.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号