首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. The Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. The ALTM lakes exhibited relatively uniform concentrations of SO4 2?. Lake-to-lake variability in acid neutralizing capacity (ANC) was largely due to differences in the supply of basic cations (Ca2+, Mg2+, K+, Na+; CB) to drainage waters. Lakes in the western and southern Adirondacks showed elevated concentrations of NO3 ?, while lakes in the central and eastern Adirondacks had lower NO3 ? concentrations during both peak and base flow periods. The ALTM lakes exhibited seasonal variations in ANC. Lake ANC was maximum during the late summer or autumn, and lowest during spring snowmelt. In general Adirondack lakes with ANC near 100 Μeq L?1 during base flow periods may experience decreases in ANC to near or below 0 Μeq L?1 during high flow periods. The ALTM lakes have exhibited long-term temporal trends in water chemistry. Most lakes have demonstrated declining SO4 2?, consistent with decreases in SO2 emissions and SO4 2? in precipitation in the eastern U.S. Reductions in SO4 2? have not coincided with a recovery in ANC. Rather, ANC values have declined in some ALTM lakes. This pattern is most likely due to increasing concentrations of NO3 ? that occurred in most of the ALTM drainage lakes.  相似文献   

2.
Temporal changes in major solute concentrations in six Czech Republic lakes were monitored during the period 1984–1995. Four chronically-acidic lakes had decreasing concentrations of strong-acid anions (CSA = SO4 2- + NO3 - + Cl-), at rates of 3.0 to 9.0 μeq L-1 yr-1. Decreases in SO4 2-, NO3 -, and Cl- (at rates up to 5.1 μeq L-1 yr-1, 3.2 μeq L-1 yr-1, and 0.6 μeq L-1 yr-1, respectively) occurred. The response to the decrease in deposition of S was rapid and annual decline of SO4 2- in lake water was directly proportional to SO4 2- concentrations in the acidified lakes. Changes in NO3 - concentrations were modified by biological consumption within the lakes. The decline in CSA was accompanied in the four most acidic lakes by decreases in AlT, increases in pH at rates of 0.011 to 0.016 pH yr- 1, and decreases of Ca2+ and Mg2+ (but not Na+) in three lakes. The acid neutralizing capacity (ANC) increased significantly in all six lakes. Increases in base cation concentrations (CB = Ca2+ + Na+ + Mg2+ + K+) were the principal contributing factor to ANC increases in the two lakes with positive ANC, whereas decrease in CSA was the major factor in ANC increases in the four chronically-acidic lakes. The continued chemical recovery of these lakes depends on the uncertain trends in N deposition, the cycling of N in the lakes and their catchments, and the magnitude of the future decrease in S deposition.  相似文献   

3.
Twenty-four low acid neutralizing capacity (ANC) lakes in Vermont have been monitored since 1980 to characterize their chemical variability, and to determine if they exhibit temporal trends in acid/base chemistry. Many of the lakes exhibit significant decreasing trends in SO4 2? and base cation (CB) concentrations, but few exhibit significant changes in pH or ANC. An examination of all trend results (significant and insignificant) suggests a tendency for ANC and pH values in these lakes to be increasing, but either the changes are too small, or the number of observations too small, for these trends to be significant. Data from these lakes suggest that the primary responses of surface waters in this region to declining rates of SO4 2? deposition are decreases in SO4 2? concentrations and rates of cation leaching from watershed soils. Decreasing rates of cb deposition may combine with lower rates of cation leaching to produce declines in cB that are very similar to measured declines in SO4 2? concentration. Vermont lakes exhibit their lowest ANC values in spring, attributable, for the most part, to dilution of cB concentrations during spring snow melt. Concentrations of SO4 2? are also more dilute in the spring, but cB decreases are greater, and the net effect is a lowering of ANC. One quarter of the Vermont lakes monitored exhibit strong seasonality in NO3 ? concentrations, with peak concentrations near 70 Μeq L?1. In these lakes, spring increases in NO3 ? concentrations are more important than CB dilution in producing minimal spring ANC values.  相似文献   

4.
Longitudinal and temporal variations in water chemistry were measured in several low-order, high-elevation streams in the Great Smoky Mountains to evaluate the processes responsible for the acid-base chemistry. The streams ranged in average base flow ANC from ?30 to 28 μeq L?1 and in pH from 4.54 to 6.40. Low-ANC streams had lower base cation concentrations and higher acid anion concentrations than did the high-ANC streams. NO3 ? and SO4 2? were the dominant acid anions. NO3 ? was derived from a combination of high leaching of nitrogen from old-growth forests and from high rates of atmospheric deposition. Streamwater SO4 2? was attributed to atmospheric deposition and an internal bedrock source of sulfur (pyrite). Although dissolved Al concentrations increased with decreasing pH in the study streams, the concentrations of inorganic monomeric Al did not follow the pattern expected from equilibrium with aluminum trihydroxide or aluminum silicate phases. During storm events, pH and ANC declined by as much as 0.5 units and 15 μeq L?1, respectively, at the downstream sites. The causes of the episodic acidification were increases in SO4 2? and DOC.  相似文献   

5.
A simple mass flux model was developed to simulate the response of SO4 2- concentrations in surface waters to past and anticipated future changes in atmospheric deposition of SO4 2-. Values of bulk (or wet) SO4 2- deposition and dry deposition of S determined from measured air concentrations and a deposition velocity were insufficient to balance watershed SO4 2- export at the Hubbard Brook Experimental Forest, NH and for a regional survey of watersheds in the northeastern U.S. We propose two explanations for the unmeasured S source: 1) a significant underestimation of dry S deposition, and/or 2) internal watershed S sources, such as weathering and/or mineralization of soil organic S. Model simulations based on these two mechanisms agreed closely with measured stream SO4 2- concentrations at Hubbard Brook. Close agreement between measured and model predicted results precluded identification of which of the two mechanisms controlled long-term trends in stream SO4 2-. Model simulations indicated that soil adsorption reactions significantly delayed the response of stream water to declines in SO4 2- inputs since 1970, but could not explain the discrepancy in watershed S budgets. Extrapolation of model predictions into the future demonstrates that uncertainty in the source of the S imbalance in watersheds has important implications for assessments of the recovery of surface water acid neutralizing capacity in response to anticipated future reductions in SO2 emissions.  相似文献   

6.
A total of 51 lakes in southern Quebec, Canada, were sampled between 1985 and 1993 to study changes in water chemistry following reductions in SO2 emissions (main precursor of acid precipitation). Time series analysis of precipitation chemistry revealed significant reductions in concentrations and deposition of SO4 2- from 1981 to 1992 in southern Quebec as well as reductions in concentrations and deposition of base cations (Ca2+, Mg2+), NO3 - and H+ in the western section of the study area. Reductions in atmospheric inputs of SO4 2- have resulted in decreased lakewater SO4 2- concentrations in the majority of the lakes in our study, although only a small fraction (9 of 37 lakes used in the temporal analysis) have improved significantly in terms of acidity status (pH, acid neutralizing capacity – ANC). The main response of the lakes to decreased SO4 2- is a decrease in base cations (Ca2++Mg2+), which was observed in 17 of 37 lakes. Seventeen lakes also showed significant increases in dissolved organic carbon (DOC) over the period of study. The resulting increases in organic acidity as well as the decrease in base cations could both play a role in delaying the recovery of our lakes.  相似文献   

7.
The Upper Midwest contains a large concentration of low alkalinity lakes located across a west to east gradient of increasing deposition acidity. We present temporal trends in the chemistry of 28 lakes (4 in Minnesota, 13 in Wisconsin, and 11 in Michigan) representative of the acid-sensitive resource of the region. Lakes were sampled three times per year between 1983 and 1989. Temporal trends in SO4 2? were all negative in direction, consistent with a regional decline in SO2 emissions and atmospheric SO4 2? deposition. However, these trends occurred predominantly in higher ANC (100 to 225 Μeq L?1), non-seepage lakes and were associated with increases in ANC and pH in only one of the 8 lakes. ANC decreased in a second group of lakes, usually in concert with decreased [Ca2++Mg2+], a response we associate with a severe drought. Disruptions in hydrologic flowpaths caused one lake to acidify rapidly after inputs of ANC-rich groundwater ceased and appeared to cause ANC and [Ca2++Mg2+] declines in a second lake by reducing stream-water inflow. Our analysis was thus complicated by hydrochemical effects of climatic variability, which confounded trends related to acidic deposition. Periods longer than 6 yr are needed to transcend climatic signals and verify subtle trends related to atmospheric pollutants.  相似文献   

8.
Data defining the major ion chemistry of lakes located in eastern Canada have been compiled for the purpose of evaluating the current status of surface water quality in relation to acidic deposition. A companion paper for lakes in the eastern United States (i.e. Part II, Linthurst et al., 1986) has been prepared also. Data sources in Canada included the National Inventory Survey, the Ontario Lake Sensitivity data set, and the National Aquatic Data base which provided an overall data base of approximately 5700 lakes. Only recently collected data (largely 1980 or later) were used in the analysis. Frequency distribution statistics were obtained for pH, acid neutralizing capacity (ANC), SO4 and organic anion (A?) concentrations. Acidic and low ANC waters in eastern Canada occur in a pattern explained by a combination of biogeochemical factors and atmospheric deposition. Nova Scotia contained the highest proportion of acidic and ultralow ANC lakes of any region surveyed in eastern North America; since this region receives approximately 20 kg.ha?1.yr?1 wet SO4 deposition, the proposed target loading may be too high to protect the highly sensitive waters of Maritime Canada. Compared to the rest of eastern Canada, lakes in Ontario have relatively high ANCs due to the influence of CaCO3 contained in the glacial till of the area. Variation in the SO4 concentration of lakes approximately follows expected gradients in wet SO4 deposition. Naturally occurring organic acids do not play a dominating role in the acidification of eastern Canadian lakes.  相似文献   

9.
Acidification of surface waters in northern Europe due to anthropogenic sulphur (S) deposition has led to new emission restrictions based on Critical Loads (CL). There is likely to be considerable interest in documenting the effect resulting S deposition changes have on surface water quality. This paper will focus on how the chemistry of 134 reference lakes in Sweden has changed between 1988 and 1993 in response to a decline in S deposition. Only 10% of the reference lakes had significant declines in sulphate during the 5 year study period. A similar number of lakes had an increase in the acid neutralizing capacity (ANC), but few of those with an increase in ANC were also lakes with significant sulphate decreases. Since there is good evidence that S deposition decreases will eventually result in ANC increases, a five year period is probably too short for evaluating the S protocol in terms of changes in lake chemistry. It takes a number of years to equilibriate to new deposition levels, and weather patterns may also obscure longer term trends.  相似文献   

10.
Long-term changes in the chemistry of precipitation (1978–94) and 16 lakes (1982–94) were investigated in the Adirondack region of New York, USA. Time-series analysis showed that concentrations of SO4 2–, NO3 , NH4 + and basic cations have decreased in precipitation, resulting in increases in pH. A relatively uniform rate of decline in SO4 2– concentrations in lakes across the region (1.81±0.35 eq L–1 yr–1) suggests that this change was due to decreases in atmospheric deposition. The decrease in lake SO4 2– was considerably less than the rate of decline anticipated from atmospheric deposition. This discrepancy may be due to release of previously deposited SO4 2– from soil, thereby delaying the recovery of lake water acidity. Despite the marked declines in concentrations of SO4 2– in Adirondack lakes, there has been no systematic increase in pH and ANC. The decline in SO4 2– has corresponded with a near stoichiometric decrease in concentrations of basic cations in low ANC lakes. A pattern of increasing NO3 concentrations that was evident in lakes across the region during the 1980's has been followed by a period of lower concentrations. Currently there are no significant trends in NO3 concentrations in Adirondack lakes.  相似文献   

11.
Between 1983–94, as acid deposition rates declined, SO4 2? concentrations decreased in 18 of 28 lakes monitored by the upper Midwest LTM program. The expected recovery of ANC and pH was less common, however. Differences in climate may account for divergent trend patterns across the region. Only in Minnesota, where climatic shifts were less pronounced, did we observe a general pattern of increasing lake ANC and pH accompanying declines in SO4 2?. In contrast, the widespread negative trends in lake SO4 2? in the upper Michigan lakes were generally not associated with recovery of ANC and pH, but with decreases in Ca+Mg. These cation decreases may be linked to decreased groundwater inputs during the drier climatic conditions characterizing the study period and decreases in Ca+Mg in atmospheric deposition. In many of the Wisconsin lakes, an overall decline in SO4 2? was precluded by SO4 2? increases during a 4-year drought midway through the study period. During the drought, declining lake water level and volume caused evaporative concentration of solutes, and may have decreased the areal extent of sulfate reduction. Despite controls on sulfur emissions across the region, recovery of pH and ANC has been hindered by climatic shifts and concurrent decreases in atmospheric deposition of cations.  相似文献   

12.
As acid deposition declines, recovery from acidification is delayed by the fact that the soil processes that earlier buffered against acidification are now being reversed. Monitoring of within catchment processes is thus desirable. However, soil sampling is destructive and not suitable for long-term monitoring at a single site, whereas sampling of soil water with suction lysimeters may be more suitable. In this paper we evaluate 8–11 years of soil water chemistry from E- and B-horizons in three acid forest soil plots within monitored catchments. Five years of sampling also included the C-horizon. To our knowledge, this is the first long-term lysimeter study including the E-horizon showing recovery from acidification, and one of few studies including the B-horizon. Soil water concentrations of SO4 decreased significantly between –9.5 and –1.4 μeq L-1 yr-1, with much higher rates of change at two southern sites compared to a northern site, where levels and changes of deposition were lower. The average annual bulk deposition of S ranged between 3 kg S ha-1 at the northernmost site to 11 kg S ha-1 at the southernmost site. The SO4 decline in E-horizons was smaller than the decline in deposition, which indicated leaching of SO4 from the O-horizon. At the two southern sites, a weaker decline in SO4 in the B-horizon compared to the E-horizon indicated desorption of SO4. The negative trends in SO4 were to a large extent balanced by decreases in base cations but there were also tendencies of recovery from acidification in soil solution at the southern sites by increasing pH and ANC. However, these were contradicted by increasing Al concentrations. A high influence of marine salts in the early 1990s may have delayed the recovery. Decreasing trends of the Ca/(H+)2 ratio in the soil solution, most pronounced at one of the southern sites, suggested that the soils were becoming more acidic, although the soil solution tended to recover.  相似文献   

13.
Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983–89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO4 2? and NO3 ? were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (>150 Μeq L?1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (<50 Μeq L?1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3 ? and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 Μg L?1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO4 2? concentrations in streamwater generally decreased and NO3 ? concentrations increased during the period 1983–1989. Combined acid anion concentrations (SO4 2? + NO3 ?) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3 ? is gradually replacing SO4 2? as the dominant acid anion in the Catskill streams.  相似文献   

14.
Manipulations with whole catchments were initiated in Norway in 1983 (RAIN project Reversing Acidification In Norway) to obtain direct experimental evidence relating to the reversibility of soil and water acidification, rate of change, and the relative roles of sulfur and nitrogen. We present here results for soil and runoff chemistry during 8 years of acid addition at Sogndal, a pristine acid-sensitive site in central Norway characterized by gneissic bedrock, thin and patchy soils, and alpine vegetation. Catchment SOG2 receives 100 meq m?2 yr?1 H2SO4, catchment SOG4 receives a 1∶1 mixture of H2SO4 and HNO3, while catchments SOG1 and SOG3 serve as untreated controls. Acid is applied to the snowpack in April and in 5 portions of 11 mm of pH 3.2 acidified lakewater during the snowfree period. The 8-years of acid addition have caused major changes in runoff chemistry. Concentrations of sulfate and base cations have increased while acid neutralizing capacity (ANC) has decreased. Henriksen's F-factor (change in concentration of non-marine Ca+Mg divided by change in concentration of non-marine SO4) is about 0.35, but is expected to decrease as soil acidification proceeds. Runoff is acidic, aluminum-rich, and toxic to fish and other aquatic organisms. Repeated soil sampling indicates no dramatic trends related to treatment. Year-to-year variations are large, and mask changes expected. The input-output budgets indicate that over the 8-yr period Ca has been depleted by about 5% of the total soil pool of exchangeable Ca. The observed trends are consistent with response predicted by MAGIC, a process-oriented model of soil and water acidification. The gradual increase in nitrate flux from catchment SOG4 may be the first indication of ‘nitrogen saturation’ induced simply by increasing nitrogen deposition.  相似文献   

15.
Data from the EPA Long Term Monitoring Program lakes at the Tunk Mountain Watershed, Maine, indicate that decreases of ≤1 Μeq L?1 yr?1 in SO4, and increases of ≤2 Μeq L?1 yr?1 in ANC occurred in the 1980s. The sum of base cations also increased. These changes in aquatic chemistry were coincident with decreased concentrations of all solutes in precipitation during the 1980s. Other data on lakes and streams in Maine collected between the 1930s and 1990 generally confirm these trends and further indicate that larger increases in ANC may have occurred in some lowland lakes since 1940. Paleolimnologic studies indicate that decreases of 0.1 to 0.5 pH units occurred in a few small mountain lakes during the past 20 to 70 yr. However, ongoing acidification of lakes is indicated based on available data. Only lakes that were already at least marginally acidic (pH ≤5.8, ANC approximately 0) appear to have acidified.  相似文献   

16.
Although water chemistry of precipitation and lakes in Nova Scotia is dominated by C1 from sea salt, correction for marine influence reveals that the dominant anion in acidified lakes is SO4. Atmospheric deposition of non-marine SO4 (SO4) and NO3- for the period 1977–1980 at 4 stations in southwest Nova Scotia averaged 47 meq SO4 * m?2 yr?1 and 21 meq NI3-m?2 yr?1 compared with 38 and 13 meq, respectively, for the average of 3 stations in the northeastern third of the province. Precipitation pH increased from 4.5 to 4.8 along the same axis. Almost 50% of the SO4 deposition occurred when storms came from the southwest, indicating low pressure tracks which pass south of major Canadian sources of S. SO4 * deposition in metropolitan Halifax (1982 bulk data) was 87 meq m?2 yr?1, due to local emissions of ca. 28 300 tonne S in the area, as well as LRTAP. Concurrent deposition of NO3-N was 15 meq m?2 yr?1 (2.1 kg ha?1 yr ?1). Loadings from SO4 deposition in the Halifax area amount to 42 kg ha?1 yr?1 and clearly exceed the federal guideline (M.O.I., 1983) of 20 kg ha?1 yr?1. Water chemistry of southwest, northeast, and Halifax area lakes show the same general SOI trends as observed for atmospheric deposition. In addition we find a positive relationship between SOI concentrations in the urban lakes and proximity to the center of the urban area.  相似文献   

17.
The Covered Catchment Experiment at Gårdsjön is a large scale forest ecosystem manipulation, where acid precipitation was intercepted by a 7000 m2 plastic roof and replaced by `clean precipitation' sprinkled below the roof for ten years between 1991 and 2001. The treatment resulted in a strong positive response of runoff quality. The runoff sulphate, inorganic aluminium and base cations decreased, while there was a strong increase in runoff ANC and a moderate increase in pH. The runoff continued to improve over the whole duration of the experiment. The achieved quality was, however, after ten years still considerably worse than estimated pre-industrial runoff at the site. Stable isotopes of sulphur were analysed to study the soil sulphur cycling. At the initial years of the experiment, the desorption of SO4 from the mineral soil appeared to control the runoff SO4 concentration. However, as the experiment proceeded, there was growing evidence that net mineralisation of soil organic sulphur in the humus layer was an additional source of SO4 in runoff. This might provide a challenge to current acidification models. The experiment convincingly demonstrated on a catchment scale, that reduction in acid deposition causes an immediate improvement of surface water quality even at heavily acidified sites. The improvement of the runoff appeared to be largely a result of cation exchange processes in the soil due to decreasing concentrations of the soil solution, while any potential change in soil base saturation seemed to be less important for the runoff chemistry over the short time period of one decade. These findings should be considered when interpreting and extrapolating regional trends in surface water chemistry to the terrestrial parts of ecosystems.  相似文献   

18.
The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76?cm?year?1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16?eq?year?1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30???eq L?1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80???eq L?1?year?1 and 1.24???eq L?1?year?1, respectively. TF NH4 + fluxes increased by 95.76?eq?year?1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56???eq L?1?year?1 and 139.56?eq?year?1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.  相似文献   

19.
Runoff and atmospheric chemistry in the Krusne hory Mts. have changed significantly from 1978 to 1994. Forest die-back related deforestation resulted in decreased dry deposition of SO2 and changes in streamwater chemical composition. Atmospheric sulphur (S) deposition decreased from extremely high values of 66.6 kg S ha?1 year?1, in the early 1980s to 35.5 kg S ha?1 year?1 in 1994. Decreasing S input is reflected in decrease of streamwater sulphate (SO4 2?) concentrations, which decreased from 1560 μeq l?1 to 1164 μeq l?1. Runoff export of S was 53 kg S ha?1 year?1 in 1993, S is not retained in the catchments. Nitrogen (N) budget indicates accumulation in the catchment, which is attributed to forest regrowth.  相似文献   

20.
In recent decades, SO4 2- concentrations have increased in groundwater and surface water of freshwater wetlands. For many minerotrophic peatlands, S originating from SO4 2--polluted groundwater and surface water is a more significant source of SO4 2- than the actual atmospheric deposition of S compounds. Lowered groundwater tables in wetlands, as a result of either natural or anthropogenic desiccation, may cause acidification because of concomitant geochemical oxidation processes. The impact of the enhanced availability of reduced S compounds, due to preceding SO4 2- pollution, on these processes was tested in a mesocosm experiment, using soil cores including vegetation from a mesotrophic wet meadow. The soils had been maintained in waterlogged condition for seven months, using two environmentally relevant SO4 2- concentrations (2 and 4 mmol L-1). The groundwater table was reduced in two successive steps: 10 cm below soil surface, and complete desiccation. Control pretreated soils did not show a decrease in soil pH during desiccation, due to adequate buffering by bicarbonate. However, both SO4 2--pretreated groups showed a significant drop in pH (from 6.5 to 4.5) caused by additional sulfide oxidation, leading to high SO4 2- concentrations (10 and 16 mmol L-1, respectively). Cation exchange and acidification-related solubilization processes induced the mobiliztation of base cations and potentially phytotoxic metals like Al. Nutrient concentrations in soil moisture were influenced strongly by SO4 2- pretreatment, showing distinct patterns for P, N and K. Therefore, S polluted groundwater and surface water may severely increase the sensitivity of wetlands to desiccation. The results are discussed in relation to wetland management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号