首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Predictions of the structures of the antigen-binding domains of an antibody, recorded before its experimental structure determination and tested subsequently, were based on comparative analysis of known antibody structures or on conformational energy calculations. The framework, the relative positions of the hypervariable regions, and the folds of four of the hypervariable loops were predicted correctly. This portion includes all residues in contact with the antigen, in this case hen egg white lysozyme, implying that the main chain conformation of the antibody combining site does not change upon ligation. The conformations of three residues in each of the other two hypervariable loops are different in the predicted models and the experimental structure.  相似文献   

2.
The pre-B cell receptor (pre-BCR) serves as a checkpoint in B cell development. In the 2.7 angstrom structure of a human pre-BCR Fab-like fragment, consisting of an antibody heavy chain (HC) paired with the surrogate light chain, the "unique regions" of VpreB and lambda5 replace the complementarity-determining region 3 (CDR3) loop of an antibody light chain and appear to "probe" the HC CDR3, potentially influencing the selection of the antibody repertoire. Biochemical analysis indicates that the pre-BCR is impaired in its ability to recognize antigen, which, together with electron microscopic visualization of a pre-BCR dimer, suggests ligand-independent oligomerization as the likely signaling mechanism.  相似文献   

3.
Gammadelta T cell receptors (TCRs), alphabeta TCRs, and antibodies are the three lineages of somatically recombined antigen receptors. The structural basis for ligand recognition is well defined for alphabeta TCR and antibodies but is lacking for gammadelta TCRs. We present the 3.4 A structure of the murine gammadelta TCR G8 bound to its major histocompatibility complex (MHC) class Ib ligand, T22. G8 predominantly uses germline-encoded residues of its delta chain complementarity-determining region 3 (CDR3) loop to bind T22 in an orientation substantially different from that seen in alphabeta TCR/peptide-MHC. That junctionally encoded G8 residues play an ancillary role in binding suggests a fusion of innate and adaptive recognition strategies.  相似文献   

4.
Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.  相似文献   

5.
The three-dimensional structures of an antibody to a peptide and its complex with the peptide antigen have been determined at 2.8 A resolution. The antigen is a synthetic 19-amino acid peptide homolog of the C helix of myohemerythrin (Mhr). The unliganded Fab' crystals are orthorhombic with two molecules per asymmetric unit, whereas the complex crystals are hexagonal with one molecule per asymmetric unit. The Fab' and the Fab'-peptide complex structures have been solved independently by molecular replacement methods and have crystallographic R factors of 0.197 and 0.215, respectively, with no water molecules included. The amino-terminal portion of the peptide sequence (NH2-Glu-Val-Val-Pro-His-Lys-Lys) is clearly interpretable in the electron density map of the Fab'-peptide complex and adopts a well-defined type II beta-turn in the concave antigen binding pocket. This same peptide amino acid sequence in native Mhr is alpha-helical. The peptide conformation when bound to the Fab' is inconsistent with binding of the Fab' to native Mhr, and suggests that binding of the Fab' to conformationally altered forms of the native Mhr or to apo-Mhr. Immunological mapping previously identified this sequence as the peptide epitope, and its fine specificity correlates well with the structural analysis. The binding pocket includes a large percentage of hydrophobic residues. The buried surfaces of the peptide and the antibody are complementary in shape and cover 460 A2 and 540 A2, respectively. These two structures now enable a comparison of a specific monoclonal Fab' both in its free and antigen complexed state. While no major changes in the antibody were observed when peptide was bound, there were some small but significant side chain and main chain rearrangements.  相似文献   

6.
Tertiary structure of plant RuBisCO: domains and their contacts   总被引:23,自引:0,他引:23  
The three-dimensional structure of ribulose-1,5-biphosphate carboxylase-oxygenase (RuBisCO), has been determined at 2.6 A resolution. This enzyme initiates photosynthesis by combining carbon dioxide with ribulose bisphosphate to form two molecules of 3-phosphoglycerate. In plants, RuBisCO is built from eight large (L) and eight small (S) polypeptide chains, or subunits. Both S chains and the NH2-terminal domain (N) of L are antiparallel beta, "open-face-sandwich" domains with four-stranded beta sheets and flanking alpha helices. The main domain (B) of L is an alpha/beta barrel containing most of the catalytic residues. The active site is in a pocket at the opening of the barrel that is partly covered by the N domain of a neighboring L chain. The domain contacts of the molecule and its conserved residues are discussed in terms of this structure.  相似文献   

7.
【目的】实现斑马鱼g型溶菌酶在大肠杆菌中表达,以获得高纯度且具溶菌活性的融合蛋白,为探究g型溶菌酶在斑马鱼抗菌过程中的作用机制及其开发利用打下基础。【方法】通过ClustalW、ExPASy、SignalP-5.0 Server及PSIPRED等在线软件对斑马鱼g型溶菌酶进行生物信息分析,经密码子优化后合成斑马鱼g型溶菌酶基因,亚克隆至pET-28a(+)表达载体并转化大肠杆菌BL21(DE3)感受态细胞,以IPTG进行诱导表达,并通过非干扰型蛋白浓度测定试剂盒和溶菌酶测定试剂盒(比浊法)测定其浓度及溶菌活性。【结果】从GenBank检索获得的斑马鱼溶菌酶基因g1(NM_001002706.1)和g2(XM_002664371.5)分别命名为Zeb-Lys-g1和Zeb-Lys-g2。Zeb-Lys-g1基因开放阅读框(ORF)长591 bp,共编码196个氨基酸残基,其编码蛋白分子量约21.6 kD;Zeb-Lys-g2的ORF长576 bp,共编码191个氨基酸残基,其编码蛋白分子量约21.1 kD;2种斑马鱼g型溶菌酶序列中均含有2个半胱氨酸残基及3个保守的催化残基位点(Glu、Asp和Asp)。Zeb-Lys-g1的N端含有17个氨基酸的信号肽,而Zeb-Lys-g2不存在典型的信号肽结构,但其三级结构均具有多个α-螺旋结构。在基于溶菌酶序列相似性构建的系统发育进化树中,Zeb-Lys-g1序列与金鱼g型溶菌酶序列的亲缘关系最近,而Zeb-Lys-g2序列与鲈形目和鲽形目鱼类的g型溶菌酶序列亲缘关系较近。将合成的斑马鱼g型溶菌酶基因(Zeb-Lys-g1和Zeb-Lys-g2)亚克隆至pET-28a(+)表达载体并转化BL21(DE3)感受态细胞,20 ℃下经IPTG(终浓度0.5 mmol/L)诱导16 h,可获得融合蛋白Zeb-Lys-g1和Zeb-Lys-g2,纯化后的浓度分别为1.01和1.66 mg/mL,对应的溶菌活性分别为689.68和44.39 U/mg。【结论】鱼类g型溶菌酶的基因变异较保守,经密码子优化及全基因合成方式合成的斑马鱼g型溶菌酶基因Zeb-Lys-g1和Zeb-Lys-g2可通过原核表达获得高纯度、高溶菌活性的融合蛋白,为探究斑马鱼溶菌酶的抗菌机制提供了技术支持。  相似文献   

8.
Reshaping human antibodies: grafting an antilysozyme activity   总被引:24,自引:0,他引:24  
The production of therapeutic human monoclonal antibodies by hybridoma technology has proved difficult, and this has prompted the "humanizing" of mouse monoclonal antibodies by recombinant DNA techniques. It was shown previously that the binding site for a small hapten could be grafted from the heavy-chain variable domain of a mouse antibody to that of a human myeloma protein by transplanting the hypervariable loops. It is now shown that a large binding site for a protein antigen (lysozyme) can also be transplanted from mouse to human heavy chain. The success of such constructions may be facilitated by an induced-fit mechanism.  相似文献   

9.
Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.  相似文献   

10.
Specificity of antibodies: primary structural basis of hapten binding   总被引:5,自引:0,他引:5  
The primiary structure of the 83 residues of the NH(2)-terminus of the V(II), region was determined for each of three different antibodies to hapten which were produced in inbred guinea pigs. Each antibody had a different and distinctive primary structure within each of the two "hypervariable" regions (Hv1 and Hv2) included in the analyzed part of the variable region of the heavy chain. The sequences of Hvl and Hv2 in the three antibodies were either unique or of restricted variability compared with those of "normnal" immunoglobulin G2. Further implication of Hv1 and Hv2 in contributing to ligand-binding specificity of antibodies came from the placement of residues modified by affinity labeling reagents in these hypervariable regions.  相似文献   

11.
Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.  相似文献   

12.
马兰  刘爱平  王佳  王小红 《南方农业学报》2017,48(11):2064-2070
[目的]克隆构建黄曲霉毒素B1(AFB1)单链抗体(scFv)基因,并对其编码蛋白序列和结构进行分析预测,为scFv分子修饰改造及在免疫学检测中的应用提供参考依据.[方法]以抗AFB1单克隆抗体杂交瘤细胞株为原料,通过PCR扩增重链可变区(VH)和轻链可变区(VL),以(Gly4Ser)3为柔性接头(Linker)拼接构建抗AFB1 scFv基因,并采用在线生物信息学分析软件对其氨基酸序列、理化性质及蛋白结构进行分析预测.[结果]抗AFB1 scFv基因全长744 bp,编码248个氨基酸,分子量为26312.05 Da,理论等电点(pI)5.70,其二级结构中含有35个α-螺旋(占14.11%)、28个β-折叠(占11.29%)、85个延伸链(占34.28%)和100个随机卷曲(占40.32%),在三级结构中连接肽卷曲将VH和VL区域牵拉而相互靠近,形成典型的抗体结构——沟槽结构,是scFv的抗原结合区域.[结论]构建的抗AFB1 scFv其VH含有117个氨基酸、VL含有116个氨基酸,具备典型抗体结构——沟槽结构,能与抗原特异性结合.  相似文献   

13.
Genetics of the antibody response to dextran in mice   总被引:67,自引:0,他引:67  
The immune response to dextran having the alpha-1,3 linkage may be under the control of antibody structural genes. Mice that respond well to this antigen produce antibody restricted with respect to light chain class (lambda) and to an antigenic determinant resulting from a particular heavy and light chain interaction. The response to dextran is controlled by a locus linked to the-heavy chain locus.  相似文献   

14.
Metalloantibodies   总被引:8,自引:0,他引:8  
A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.  相似文献   

15.
The three-dimensional structure of favin, the glucose- and mannose-binding lectin of Vicia faba (vetch, broad bean), has been determined at a resolution of 2.8 angstroms by molecular replacement. The crystals contain specifically bound glucose and provide the first high-resolution view of specific saccharide binding in a leguminous lectin. The structure is similar to those of concanavalin A (Con A) and green pea lectin; differences from Con A show that minimal changes are needed to accommodate the cyclic permutation in amino acid sequence between the two molecules. The molecule is an ellipsoidal dimer dominated by extensive beta structures. Each protomer contains binding sites for two divalent metal ions (Mn2+ and Ca2+) and a specific saccharide. Glucose is bound by favin in a cleft in the molecular surface and has noncovalent contacts primarily with two peptide loops, one of which contains several metal ion ligands. The specific carbohydrate-binding site is similar to that of Con A in location and general peptide folding, despite several differences in specific amino acid residues.  相似文献   

16.
Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.  相似文献   

17.
The structure of L(8)S(8) RuBisCo (where L is the large subunit and S is the small subunit) from spinach has been determined to a resolution of 2.8 ?ngstrom by using fourfold averaging of an isomorphous electron density map based on three heavy-atom derivatives. The structure of the S subunit is different from that previously reported for the tobacco S subunit in spite of 75 percent sequence identity. The elements of secondary structure, four antiparallel beta strands and two alpha helices, are the same, but the topology and direction of the polypeptide chain through these elements differ completely. One of these models is clearly wrong. The spinach model has hydrophobic residues in the core between the alpha helices and beta sheet as well as conserved residues in the subunit interactions. The deletion of residues 49 to 62 that is present in the Anabaena sequence removes a loop region in the spinach model. The positions of three mercury atoms in the heavy-atom derivatives agree with the assignment of side chains in the spinach structure.  相似文献   

18.
叶平  余为一 《安徽农业科学》2010,38(28):15668-15669
[目的]制备鸡MHCⅡ类分子的单克隆抗体。[方法]在分析鸡MHCII类分子蛋白序列基础上,选取鸡MHCⅡα链基因第2~6外显子和β链基因第3~6外显子进行原核表达,以纯化的融合蛋白免疫Balb/c小鼠,取其脾细胞与骨髓瘤细胞SP2/0进行融合,经克隆和间接ELISA筛选阳性细胞株。[结果]共得到1株分泌鸡MHCⅡα链抗体和2株MHCⅡβ链抗体的杂交瘤细胞,分别命名为MHCⅡα-4、Ⅱβ6-2和Ⅱβ6-31,其腹水效价分别为1∶256000、1∶256000和1∶1280000。Western blotting分析表明其特异性强,能与相应蛋白结合。[结论]成功获得了3株稳定分泌抗鸡MHCⅡ类分子抗体的杂交瘤细胞。  相似文献   

19.
Antibody active sites and immunoglobulin molecules   总被引:18,自引:0,他引:18  
In order to obtain detailed information about the relationship between structure and function in antibody molecules, a method called affinity labeling has been devised to attach chemical labels specifically to amino acid residues in the active sites of antibody molecules. With antibodies to three different haptens, highly specific labeling of the active sites has been achieved. Tyrosine residues on both heavy and light polypeptide chains have been labeled in a molar ratio close to 2:1, and labels on the two chains are equally specific to the active sites. Peptide fragmentation studies of the labeled chains of one antibody system have shown that: (i) within 25 amino acid residues of the labeled tyrosine on either chain, substantial chemical heterogeneity exists among different antibody molecules of the same specificity; and (ii) the labeled peptide fragments from both chains are very similar in physicochemical characteristics, including average size, heterogeneity, and unusual hydrophobicity. These experimental results have led us to the view that a particular region of the heavy chain and a particular region of the light chain are utilized to construct the active sites of the three different antibodies, differences in specificity arising from chemical perturbations in these two regions. Correlated structural studies of affinity-labeled antibodies and of the homogeneous light chains (Bence Jones proteins) and heavy chains produced in multiple myeloma may permit the identification of these special active-site regions. The view that active sites of different specificity are chemical perturbations of a particular region of the antibody molecule has a possible close analogue in enzyme systems, particularly among the esterases. The marked chemical similarities we have observed between the active site regions of heavy and light chains indicate to us that chemical homologies, but not identities, exist between the chains. This is reinforced by recently obtained amino acid sequence data which reveal homologies between the two chains near their carboxyl-terminals. These results indicate that the structural genes which code for the synthesis of heavy and light chains are related, presumably having arisen from some common ancestral gene during evolution. This conclusion strongly suggests that both heavy and light chains determine antibody specificity, and has important implications for the still-unknow mechanisms of antibody biosynthesis.  相似文献   

20.
研究了塔拉豆的化学组成和塔拉多糖胶的化学结构及流变性质。塔拉豆中蛋白质含量为13.2%,胚乳占种子组成的30.5%。通过GC,PC,IR及NMR分析表明:胚乳中含有78.0%的半乳甘露聚糖,主链是以β-(1,4)-苷键连接的D-吡喃甘露糖,支链是以α-(1,6)-苷键连接的D-吡喃半乳糖,半乳糖与甘露糖配比为1:2.4。塔拉胶水溶液为假塑性流体,其1%水溶液表观粘度达313mPa·s(30℃,170S-1),塔拉多糖胶与黄原胶或卡拉胶共混能形成凝胶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号