首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Expression of economically relevant proteins in alternative expression platforms, especially plant expression platforms, has gained significant interest in recent years. A special interest in working with plants as bioreactors for the production of pharmaceutical proteins is related to low production costs, product safety and quality. Among the different properties that plants can also offer for the production of recombinant proteins, protein glycosylation is crucial since it may have an impact on pharmaceutical functionality and/or stability.

Results

The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor was transiently expressed in Nicotiana benthamiana plants and subjected to mammalian-specific mucin-type O-glycosylation by co-expressing the pharmaceutical protein together with the glycosylation machinery responsible for such post-translational modification.

Conclusions

The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor can be expressed in N. benthamiana plants via agroinfiltration with its native mammalian-specific mucin-type O-glycosylation.
  相似文献   

2.

Context

Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements.

Objectives

This study explores the multiscale relationships of habitat suitability for the pine (Martes martes) and stone marten (M. foina) in northern Spain to evaluate differences in habitat selection and scaling, and to determine if there is habitat niche displacement when both species coexist.

Methods

We combined bivariate scaling and maximum entropy modeling to compare the multiscale habitat selection of the two martens. To optimize the HSM, the performance of three sampling bias correction methods at four spatial scales was explored. HSMs were compared to explore niche differentiation between species through a niche identity test.

Results

The comparison among HSMs resulted in the detection of a significant niche divergence between species. The pine marten was positively associated with cooler mountainous areas, low levels of human disturbance, high proportion of natural forests and well-connected forestry plantations, and medium-extent agroforestry mosaics. The stone marten was positively related to the density of urban areas, the proportion and extensiveness of croplands, the existence of some scrub cover and semi-continuous grasslands.

Conclusions

This study outlines the influence of the spatial scale and the importance of the sampling bias corrections in HSM, and to our knowledge, it is the first comparing multiscale habitat selection and niche divergence of two related marten species. This study provides a useful methodological framework for multispecies and multiscale comparatives.
  相似文献   

3.

Context

Submersed aquatic vegetation (SAV) performs water quality enhancing functions that are critical to the overall health of estuaries such as the Chesapeake Bay. However, eutrophication and sedimentation have decimated the Bay’s SAV population to a fraction of its historical coverage. Understanding the spatial distribution of and connectedness among patches is important for assessing the dynamics and health of the remaining SAV population.

Objectives

We seek to explore the distribution of SAV patches and patterns of potential connectivity in the Chesapeake Bay through time.

Methods

We assess critical distances, from complete patch isolation to connection of all patches, in a merged composite coverage map that represents the sum of all probable Vallisneria americana containing patches between 1984 and 2010 and in coverage maps for individual years within that timeframe for which complete survey data are available.

Results

We have three key findings: First, the amount of SAV coverage in any given year is much smaller than the total recently occupied acreage. Second, the vast majority of patches of SAV that are within the tolerances of V. americana are ephemeral, being observed in only 1 or 2 years out of 26 years. Third, this high patch turnover results in highly variable connectivity from year to year, dependent on dispersal distance and patch arrangement.

Conclusions

Most of the connectivity thresholds are beyond reasonable dispersal distances for V. americana. If the high turnover in habitat occupancy is due to marginal water quality, relatively small improvements could greatly increase V. americana growth and persistence.
  相似文献   

4.

Context

Habitat loss and fragmentation are among the major drivers of population declines and extinction, particularly in large carnivores. Connectivity models provide practical tools for assessing fragmentation effects and developing mitigation or conservation responses. To be useful to conservation practitioners, connectivity models need to incorporate multiple scales and include realistic scenarios based on potential changes to habitat and anthropogenic pressures. This will help to prioritize conservation efforts in a changing landscape.

Objectives

The goal of our paper was to evaluate differences in population connectivity for lions (Panthera leo) across the Kavango-Zambezi Trans-frontier Conservation Area (KAZA) under different landscape change scenarios and a range of dispersal distances.

Methods

We used an empirically optimized resistance surface, based on analysis of movement pathways of dispersing lions in southern Africa to calculate resistant kernel connectivity. We assessed changes in connectivity across nine landscape change scenarios, under each of which we explored the behavior of lions with eight different dispersal abilities.

Results

Our results demonstrate that reductions in the extent of the protected area network and/or fencing protected areas will result in large declines in the extent of population connectivity, across all modeled dispersal abilities. Creation of corridors or erection of fences strategically placed to funnel dispersers between protected areas increased overall connectivity of the population.

Conclusions

Our results strongly suggest that the most effective means of maintaining long-term population connectivity of lions in the KAZA region involves retaining the current protected area network, augmented with protected corridors or strategic fencing to direct dispersing individuals towards suitable habitat and away from potential conflict areas.
  相似文献   

5.

Background

Characterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis.

Results

Agrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2.

Conclusion

With this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants.
  相似文献   

6.

Background

CRISPR-Cas is a recent and powerful addition to the molecular toolbox which allows programmable genome editing. It has been used to modify genes in a wide variety of organisms, but only two alga to date. Here we present a methodology to edit the genome of Thalassiosira pseudonana, a model centric diatom with both ecological significance and high biotechnological potential, using CRISPR-Cas.

Results

A single construct was assembled using Golden Gate cloning. Two sgRNAs were used to introduce a precise 37 nt deletion early in the coding region of the urease gene. A high percentage of bi-allelic mutations (≤61.5%) were observed in clones with the CRISPR-Cas construct. Growth of bi-allelic mutants in urea led to a significant reduction in growth rate and cell size compared to growth in nitrate.

Conclusions

CRISPR-Cas can precisely and efficiently edit the genome of T. pseudonana. The use of Golden Gate cloning to assemble CRISPR-Cas constructs gives additional flexibility to the CRISPR-Cas method and facilitates modifications to target alternative genes or species.
  相似文献   

7.

Context

In a global context of erosion of biodiversity, the current environmental policy in Europe is oriented towards the creation and the preservation of ecological networks for wildlife. However, most of the management guidelines arose from a structural landscape diagnostic without truly taking into consideration species’ needs.

Objectives

We tested whether and how landscape elements influence the functional connectivity of landscapes for a forest specialist species, the European pine marten (Martes martes), in Northeastern France.

Methods

We collected pine marten scats and tissues from 13 evenly distributed study sites across the whole study area in order to test several types of barriers such as highways, waterways, and open agricultural fields. We crossed the results of several methods: spatial autocorrelation analysis, causal modelling framework, and clustering methods.

Results

The study indicates significant genetic differentiation among the sampling sites. A signal of isolation by distance was detected but disappeared after partialling out landscape or barrier resistance. The only model that was fully supported by causal modelling was the one identifying waterways as the main driver of genetic differentiation. Moreover, clustering analyses indicated the presence of genetic clusters, suggesting that pine marten spatial genetic pattern could be explained by the presence of waterways but also by their reluctance to cross open fields.

Conclusions

The current ecological network could thus be improved by increasing permeability of waterways, in particular navigation canals, and by maintaining and restoring forested corridors in agricultural plains.
  相似文献   

8.

Background

Sorghum (Sorghum bicolor L.) is one of the world’s most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency.

Results

We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5–2.0 mm in length) isolated 12–15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt-II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs.

Conclusions

This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
  相似文献   

9.

Background

Safflower (Carthamus tinctorius L.) is a difficult crop to genetically transform being susceptible to hyperhydration and poor in vitro root formation. In addition to traditional uses safflower has recently emerged as a broadacre platform for the production of transgenic products including modified oils and pharmaceutically active proteins. Despite commercial activities based on the genetic modification of safflower, there is no method available in the public domain describing the transformation of safflower that generates transformed T1 progeny.

Results

An efficient and reproducible protocol has been developed with a transformation efficiency of 4.8% and 3.1% for S-317 (high oleic acid content) and WT (high linoleic acid content) genotypes respectively. An improved safflower transformation T-DNA vector was developed, including a secreted GFP to allow non-destructive assessment of transgenic shoots. Hyperhydration and necrosis of Agrobacterium-infected cotyledons was effectively controlled by using iota-carrageenan, L-cysteine and ascorbic acid. To overcome poor in vitro root formation for the first time a grafting method was developed for safflower in which ~50% of transgenic shoots develop into mature plants bearing viable transgenic T1 seed. The integration and expression of secreted GFP and hygromycin genes were confirmed by PCR, Southern and Western blot analysis. Southern blot analysis in nine independent lines indicated that 1-7 transgenes were inserted per line and T1 progeny displayed Mendelian inheritance.

Conclusions

This protocol demonstrates significant improvements in both the efficiency and ease of use over existing safflower transformation protocols. This is the first complete method of genetic transformation of safflower that generates stably-transformed plants and progeny, allowing this crop to benefit from modern molecular applications.
  相似文献   

10.

Context

Abundance and diversity of bumblebees have been declining over the past decades. To successfully conserve bumblebee populations, we need to understand how landscape characteristics affect the quantity and quality of floral resources collected by colonies and subsequently colony performance.

Objectives

We therefore investigated how amount and composition of pollen collected by buff-tailed bumblebee Bombus terrestris colonies was affected by the surrounding landscape (i.e. the proportion of forest, urban, semi-natural habitats) and how they were related to colony growth.

Methods

Thirty B. terrestris colonies were placed at grassland sites differing in surrounding landscape. Colonies were established in spring when availability of flowering plants was highest, and their weight gain was monitored for 1 month. We additionally recorded the quantity and compared plant taxonomic composition and nutritional quality (i.e. amino acid composition) of pollen stored.

Results

Bumblebee colonies varied little in the pollen spectra collected despite differences in surrounding landscape composition. They collected on average 80 % of pollen from woody plants, with 34 % belonging to the genus Acer. Early colony growth positively correlated with total amount of woody pollen and protein collected and decreased with increasing proportions of semi-natural habitats and total amino acid concentrations.

Conclusions

Our results suggest that woody plant species represent highly important pollen sources for the generalist forager B. terrestris early in the season. We further show that colony growth of B. terrestris is predominantly affected by the quantity, not quality, of forage, indicating that several abundant plant species flowering throughout the bumblebees’ foraging season may cover the colonies’ nutritional needs.
  相似文献   

11.

Context

Invasive Burmese pythons are altering the ecology of southern Florida and their distribution is expanding northward. Understanding their habitat use is an important step in understanding the pathways of the invasion.

Objectives

This study identifies key landscape variables in predicting relative habitat suitability for pythons at the present stage of invasion through presence-only ecological niche modeling using geographical sampling bias correction.

Methods

We used 2014 presence-only observations from the EDDMapS database and three landscape variables to model habitat suitability: fine-scale land cover, home range-level land cover, and distance to open freshwater or wetland. Ten geographical sampling bias correction scenarios based on road presence and sampling effort were evaluated to improve the efficacy of modeling.

Results

The best performing models treated road presence as a binary factor rather than a continuous decrease in sampling effort with distance from roads. Home range-level cover contributed the most to the final prediction, followed by proximity to water and fine-scale land cover. Estuarine habitat and freshwater wetlands were the most important variables to contribute to python habitat suitability at both the home range-level and fine-scale. Suitability was highest within 30 m of open freshwater and wetlands.

Conclusions

This study provides quantifiable, predictive relationships between habitat types and python presence at the current stage of invasion. This knowledge can elucidate future targeted studies of python habitat use and behavior and help inform management efforts. Furthermore, it illustrates how estimates of relative habitat suitability derived from MaxEnt can be improved by both multi-scale perspectives on habitat and consideration of a variety of bias correction scenarios for selecting background points.
  相似文献   

12.

Context

East African ecosystems are characterized by the migrations of large herbivores that are highly vulnerable to the recent development of anthropogenic land use change.

Objectives

We analyzed land cover changes in the Kenyan-Tanzanian borderlands of the greater Amboseli ecosystem to evaluate landscape connectivity using African elephants as an indicator species.

Methods

We used multi-temporal Landsat imagery and a post classification approach to monitor land cover changes over a 43-year period. GIS based methods were accompanied by a literature review for spatial data on land cover changes and elephant migrations.

Results

Land cover changed considerably between 1975 and 2017. Wood- and bushlands declined by 16.3% while open grasslands increased throughout the study region (+?10.3%). Agricultural expansion was observed (+?12.2%) occupying important wildlife habitats and narrowing migration corridors. This development has led to the isolation of Nairobi National Park which was previously part of a large contiguous ecosystem. Eight migration corridors were identified of which only one is formally protected. Two others are almost completely blocked by agriculture and three are expected to become endangered under continuing land use changes.

Conclusions

Landscape connectivity is still viable for this ecosystem (except for Nairobi National Park). However, the current situation is very fragile as anthropogenic land use changes are threatening most of the identified large mammal migration corridors. Sustainable land use planning with regard to important wildlife habitats and connecting corridors is a crucial task for further conservation work to safeguard a viable future for wildlife populations in the Kenyan-Tanzanian borderlands.
  相似文献   

13.

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.
  相似文献   

14.

Context

The analysis of individual movement choices can be used to better understand population-level resource selection and inform management.

Objectives

We investigated movements and habitat selection of 13 bobcats in Vermont, USA, under the assumption individuals makes choices based upon their current location. Results were used to identify “movement-defined” corridors.

Methods

We used GPS-collars and GIS to estimate bobcat movement paths, and extracted statistics on land cover proportions, topography, fine-scale vegetation, roads, and streams within “used” and “available” space surrounding each movement path. Compositional analyses were used to determine habitat preferences with respect to landcover and topography; ratio tests were used to determine if used versus available ratios for vegetation, roads, and streams differed from 1. Results were used to create travel cost maps, a primary input for corridor analysis.

Results

Forested and scrub-rock land cover were most preferred for movement, while developed land cover was least preferred. Preference depended on the composition of the “available” landscape: Bobcats moved?>?3 times more quickly through forest and scrub-rock habitat when these habitats were surrounded by agriculture or development than when the available buffer was similarly composed. Overall, forest edge, wetland edge and higher stream densities were selected, while deep forest core and high road densities were not selected. Landscape-scale connectivity maps differed depending on whether habitat suitability, preference, or selection informed the travel cost map.

Conclusions

Both local and landscape scale land cover characteristics affect habitat preferences and travel speed of bobcats, which in turn can inform management and conservation activities.
  相似文献   

15.

Context

Distribution and connectivity of suitable habitat for species of conservation concern is critical for effective conservation planning. Capercaillie (Tetrao urogallus), an umbrella species for biodiversity conservation, is increasingly threatened because of habitat loss and fragmentation.

Objective

We assessed the impact of drastic changes in forest management in the Carpathian Mountains, a major stronghold of capercaillie in Europe, on habitat distribution and connectivity.

Methods

We used field data surveys with a forest disturbance dataset for 1985–2010 to map habitat suitability, and we used graph theory to analyse habitat connectivity.

Results

Climate, topography, forest proportion and fragmentation, and the distance to roads and settlements best identified capercaillie presence. Suitable habitat area was 7510 km2 in 1985; by 2010, clear-cutting had reduced that area by 1110 km2. More suitable habitat was lost inside protected areas (571 km2) than outside (413 km2). Habitat loss of 15 % reduced functional connectivity by 33 % since 1985.

Conclusions

Forest management, particularly large-scale clear-cutting and salvage logging, have substantially diminished and fragmented suitable capercaillie habitat, regardless of the status of forest protection. Consequently, larger areas with suitable habitat are now isolated and many patches are too small to sustain viable populations. Given that protection of capercaillie habitat would benefit many other species, including old-growth specialists and large carnivores, conservation actions to halt the loss of capercaillie habitat is urgently needed. We recommend adopting policies to protect natural forests, limiting large-scale clear-cutting and salvage logging, implementing ecological forestry, and restricting road building to reduce forest fragmentation.
  相似文献   

16.

Context

Quantifying gene flow in natural populations is a key topic in both evolutionary and conservation biology. Understanding the extent to which the landscape matrix facilitates or impedes gene flow is becoming a high priority in a context of worldwide habitat loss and fragmentation.

Objectives

Unexpectedly, a lower genetic diversity and a higher genetic structure have been previously observed in the less fragmented and the most forested habitat across four pine marten (Martes martes) populations in France. Our aim was to quantify the effect of landscape on the spatial distribution of genetic diversity in two populations in contrasting habitats.

Methods

We conducted an individual-based landscape genetics analysis in a highly fragmented rural plain (Bresse, n = 126) and in a highly forested (50 %) mountainous area (Ariège, n = 88) in France. We tested for isolation-by-resistance using least-cost distances and used a causal modeling approach on 16,384 landscape and 104 elevation resistance scenarios.

Results

Landscape structure influenced the genetic differentiation in Bresse, with vegetation providing more genetic connectivity over the study area than open areas, while roads and human buildings showed unexpected low resistance to gene flow. In Ariège, genetic differentiation was mainly associated with changes in elevation, with an optimal elevation for gene flow of around 1700 m, likely associated with changes in vegetation structure.

Conclusions

The pine marten seems to be able to cope with human-dominated landscapes and with fragmented forest landscapes, whereas elevation is the major driver of genetic differentiation in our mountainous landscape. Additionally, we highlight the importance of spatial replication in landscape genetics for deriving reliable conservation and management measures over the species distribution.
  相似文献   

17.

Context

Organisms commonly respond to their environment across a range of scales, however many habitat selection studies still conduct selection analyses using a single-scale framework. The adoption of multi-scale modeling frameworks in habitat selection studies can improve the effectiveness of these studies and provide greater insights into scale-dependent relationships between species and specific habitat components.

Objectives

Our study assessed multi-scale nest/roost habitat selection of the federally “Threatened” Mexican spotted owl (Strix occidentalis lucida) in northern Arizona, USA in an effort to provide improved conservation and management strategies for this subspecies.

Methods

We conducted multi-scale habitat modeling to assess habitat selection by Mexican spotted owls using survey data collected by the USFS. Each selected covariate was included in multi-scale models at their “characteristic scale” and we used an all-subsets approach and model selection framework to assess habitat selection.

Results

The “characteristic scale” identified for each covariate varied considerably among covariates and results from multi-scale models indicated that percent canopy cover and slope were the most important covariates with respect to habitat selection by Mexican spotted owls. Multi-scale models consistently outperformed their analogous single-scale counterparts with respect to the proportion of deviance explained and model predictive performance.

Conclusions

Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective conservation and management strategies.
  相似文献   

18.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   

19.

Context

Common species important for ecosystem restoration stand to lose as much genetic diversity from anthropogenic habitat fragmentation and climate change as rare species, but are rarely studied. Salt marshes, valuable ecosystems in widespread decline due to human development, are dominated by the foundational plant species black needlerush (Juncus roemerianus Scheele) in the northeastern Gulf of Mexico.

Objectives

We assessed genetic patterns in J. roemerianus by measuring genetic and genotypic diversity, and characterizing population structure. We examined population connectivity by delineating possible dispersal corridors, and identified landscape factors influencing population connectivity.

Methods

A panel of 19 microsatellite markers was used to genotype 576 samples from ten sites across the northeastern Gulf of Mexico from the Grand Bay National Estuarine Research Reserve (NERR) to the Apalachicola NERR. Genetic distances (FST and Dch) were used in a least cost transect analysis (LCTA) within a hierarchical model selection framework.

Results

Genetic and genotypic diversity results were higher than expected based on life history literature, and samples structured into two large, admixed genetic clusters across the study area, indicating sexual reproduction may not be as rare as predicted in this clonal macrophyte. Digitized coastal transects buffered by 500 m may represent possible dispersal corridors, and developed land may significantly impede population connectivity in J. roemerianus.

Conclusions

Results have important implications for coastal restoration and management that seek to preserve adaptive potential by sustaining natural levels of genetic diversity and conserving population connectivity. Our methodology could be applied to other common, widespread and understudied species.
  相似文献   

20.

Background

Lignocellulosic biomass is an important renewable resource for biofuels and materials. How plants synthesise cellulose is not completely understood. It is known that cellulose synthase complex (CSCs) moving in the plasma membrane synthesise the cellulose. CESA proteins are the core components of CSC. In Arabidopsis, in vitro mutagenesis of proteins followed by complementation analysis of mutants lacking the gene represents an important tool for studying any biological process, including cellulose biosynthesis. Analysis of a large number of plants is crucial for these types of studies.

Results

By using aspiration rather than centrifugation to remove liquids during various stages of protocol, we were able to increase the throughput of the method as well as minimise the sample loss. As a test case, we determined cellulose content of wild type and secondary wall cesa mutants across the length of primary shoot which was fond to be rather uniform in 7-week-old plants. Additionally, we found that the cellulose content of single mutants was comparable to the higher order mutants.

Conclusions

Here we describe a medium-throughput adaptation of Updegraff’s method that allowed us to determine cellulose content of 200 samples each week.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号