首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vertical movements related to the thermoregulation were investigated in 12 juvenile bigeye tuna (Thunnus obesus) in Japanese waters using archival tag data. Movements changed with time of day, season, and body size. During daytime, bigeye tuna descended to greater depths, presumably to feed in the deep scattering layer (DSL). Thereafter, they repeatedly ascended to shallower layers, suggesting attempts at behavioral thermoregulation, although the beginning of vertical thermoregulatory ascents might reflect a shift in DSL depth. By the end of such movement, the whole‐body heat‐transfer coefficient might decrease because, although the depth and ambient temperature of the upper layers did not change, the body temperature gradually decreased significantly just after ascent for thermoregulation. Seasonal patterns indicated that the vertical thermal structure of the ocean might influence this ascent behavior. For example, from January to May, bigeye tuna made fewer ascents to less shallow waters, suggesting that they respond to increasing depths of the mixed surface layer by reducing energy expenditure during vertical migration. In addition, as body size increased, fewer thermoregulatory ascents were required to maintain body temperature, and fish remained deeper for longer periods. Thus, vertical thermoregulatory movements might change with body size as bigeye tuna develop better endothermic and thermoregulatory abilities. We hypothesize that bigeye might also increase cold tolerance as they grow, possibly due to ontogenetic shifts in cardiac function.  相似文献   

2.
Geolocation data were recovered from archival tags applied to bigeye tuna near Hawaii. A state‐space Kalman filter statistical model was used to estimate geolocation errors, movement parameters, and most probable tracks from the recovered data. Standard deviation estimates ranged from 0.5° to 4.4° latitude and from 0.2° to 1.6° longitude. Bias estimates ranged from ?1.9° to 4.1° latitude and from ?0.5° to 3.0° longitude. Estimates of directed movement were close to zero for most fish reaching a maximum magnitude of 5.3 nm day?1 for the one fish that moved away from its release site. Diffusivity estimates were also low, ranging from near zero to 1000 nm2 day?1. Low values of the estimated movement parameters are consistent with the restricted scale of the observed movement and the apparent fidelity of bigeye to geographical points of attraction. Inclusion of a time‐dependent model of the variance in geolocation estimates reduced the variability of latitude estimates. The state‐space Kalman filter model appears to provide realistic estimates of in situ geolocation errors and movement parameters, provides a means to avoid indeterminate latitude estimates during equinoxes, and is a potential bridge between analyses of individual and population movements.  相似文献   

3.
太平洋大眼金枪鱼延绳钓渔获分布及渔场环境浅析   总被引:5,自引:6,他引:5  
樊伟  崔雪森  周甦芳 《海洋渔业》2004,26(4):261-265
本文主要根据收集到的渔获量数据、海水表层温度数据和有关文献资料 ,应用GIS技术对太平洋大眼金枪鱼延绳钓渔业进行了定量或定性分析。结果表明 :太平洋大眼金枪鱼延绳钓渔场主要分布在 2 0°N~2 0°S之间的热带海域 ,具纬向分布特征。对渔获产量同海表温度的分月统计显示 :太平洋大眼金枪鱼渔场最适月平均表层水温约 2 8~ 2 9℃ ,渔场出现频次为偏态分布型。最后 ,结合有关文献综合讨论分析了海表温度、溶解氧含量、海流等环境因子与金枪鱼渔场分布和形成机制的关系  相似文献   

4.
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

5.
根据1950―2016年的渔获量数据及1955―2016年的单位捕捞努力量(Catch Per Unit Effort,CPUE)数据,采用贝叶斯状态空间剩余产量模型框架JABBA(Just Another Bayesian Biomass Assessment)对印度洋大眼金枪鱼(Thunnus obesus)的资源状况进行评估,分析了渔船效应、CPUE数据尺度对评估结果的影响。结果表明,模型拟合效果对于不同时间跨度下CPUE数据的选择比较敏感。当选用时间跨度为1979―2016年的CPUE数据且考虑渔船效应时,模型拟合效果最好。2016年大眼金枪鱼的资源量为812 kt,最大可持续产量(Maximum Sustainable Yield,MSY)为163 kt,远高于同年渔获量86.81 kt,其资源量具有82.50%的概率处于"健康"状态。当总允许可捕量为69.45~104.17 kt时(2016年渔获量的80%~120%),未来10年大眼金枪鱼的资源量仍高于B_(MSY)(达到MSY所需的生物量)。回顾性分析结果表明,该资源评估结果存在一定程度的回顾性问题,捕捞死亡率和资源量分别存在被低估和高估的现象。将来需要在模型结构设定、CPUE数据选择及模型参数的先验分布设置等方面进一步优化。  相似文献   

6.
7.
A new habitat‐based model is developed to improve estimates of relative abundance of Pacific bigeye tuna (Thunnus obesus). The model provides estimates of `effective' longline effort and therefore better estimates of catch‐per‐unit‐of‐effort (CPUE) by incorporating information on the variation in longline fishing depth and depth of bigeye tuna preferred habitat. The essential elements in the model are: (1) estimation of the depth distribution of the longline gear, using information on gear configuration and ocean currents; (2) estimation of the depth distribution of bigeye tuna, based on habitat preference and oceanographic data; (3) estimation of effective longline effort, using fine‐scale Japanese longline fishery data; and (4) aggregation of catch and effective effort over appropriate spatial zones to produce revised time series of CPUE. Model results indicate that effective effort has increased in both the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). In the WCPO, effective effort increased by 43% from the late 1960s to the late 1980s due primarily to the increased effectiveness of effort (deeper longline sets) rather than to increased nominal effort. Over the same period, effective effort increased 250% in the EPO due primarily to increased nominal effort. Nominal and standardized CPUE indices in the EPO show similar trends – a decline during the 1960s, a period of stability in the 1970s, high values during 1985–1986 and a decline thereafter. In the WCPO, nominal CPUE is stable over the time‐series; however, standardized CPUE has declined by ~50%. If estimates of standardized CPUE accurately reflect relative abundance, then we have documented substantial reductions of bigeye tuna abundance for some regions in the Pacific Ocean. A decline in standardized CPUE in the subtropical gyres concurrent with stability in equatorial areas may represent a contraction in the range of the population resulting from a decline in population abundance. The sensitivity of the results to the habitat (temperature and oxygen) assumptions was tested using Monte Carlo simulations.  相似文献   

8.
Swimming depth and selected environmental factors were examined using 2764 days of archival tag data for 18 bigeye tuna Thunnus obesus (fork length at release 58.5 ± 7.2 cm) that were captured, tagged, and released into Japanese waters. Daytime swimming depth was deeper with increasing body length. The lowest temperature encountered was usually about 10 °C or slightly higher. A positive correlation between swimming depth and light intensity at the ocean surface was dominant for during both daytime and nighttime. Synchronicity of swimming depth with deep scattering layer (DSL) was observed, except around midday. Deep diving to depths exceeding 550 m was observed a mean of 0.30 dives/fish/day. Based on the classification and analyses of deep diving pattern and consideration of environmental data, deep diving was assumed to be undertaken for the purposes of foraging, predator avoidance, and exploration of bathymetry, as well as due to aberrant behavior. Occasionally, extremely deep diving events exceeding 1000 m (maximum 1616 m) were recorded. Bigeye tuna appear to have high visual acuity and tolerance of both low and wide temperature ranges, and low dissolved oxygen content. Thus, probably bigeye tuna swimming depth is primarily adjusted based on prey distribution.  相似文献   

9.
Archival tags were used to study the seasonal movements, migration patterns and vertical distribution of juvenile North Pacific albacore (Thunnus alalunga). Between 2001 and 2006, archival tags were deployed in North Pacific albacore in two regions of the Northeast Pacific: (i) off Northern Baja California, Mexico and Southern California, and (ii) off Washington and Oregon. Twenty archival tagged fish were recovered with times at liberty ranging from 63 to 697 days. Tagged albacore exhibited five distinct, seasonal migratory patterns. Depth and temperature data also showed a broad range of vertical behaviors. In certain regions such as off Baja California, Mexico, juvenile albacore make frequent dives to depths exceeding 200 m during the day and remain in the surface mixed layer at night, whereas off Oregon and Washington they remain near the surface both day and night. Water temperatures encountered ranged from 3.3 to 22.7°C. Peritoneal temperatures were significantly higher by an average of approximately 4°C, as expected in these warm‐bodied fish. This study provides a comprehensive examination of horizontal and vertical movements of juvenile albacore in the Northeast Pacific. The results reveal diverse behavior that varies regionally and seasonally as albacore move among different habitats throughout the entire North Pacific.  相似文献   

10.
南太平洋雌性大眼金枪鱼性腺成熟等级研究   总被引:1,自引:0,他引:1  
对2010年~2013年南太洋海域采集的雌性大眼金枪鱼(Thunnus obesus)卵巢组织样本进行石蜡切片实验,研究其发育特征,鉴定其成熟等级并估算繁殖力。结果显示,卵巢的发育分为未成熟期、成熟前期、成熟后期、排卵期和排卵后期5个阶段;雌性性腺指数范围为0.26~8.58,平均为3.56,随叉长增长而增大;50%成熟叉长为116.32 cm;平均怀卵数为1.09106 粒;平均相对繁殖力为20.5 粒g-1。聚类分析显示,因钓获深度不同,2、3期为一类,1、4期为一类,5期独为一类。研究表明,在南太平洋海域,大眼金枪鱼初次性成熟年龄比其他海域提前,可能是受过度捕捞的影响。  相似文献   

11.
Movement patterns of 17 bigeye tuna (Thunnus obesus) near the Azores Islands were analyzed between April and May 2001 and 2002 using pop‐up satellite archival tags. Despite short attachment durations (1 to 21 days, 8.2 days on average), their vertical movements revealed much shallower distribution of bigeye tuna in comparison with previous studies in the tropical Pacific and tropical Atlantic. Depth and temperature histograms were unimodal, although overall depth distribution during the day was deeper than during the night due to daily incursions in deeper waters. Although generalized additive models showed significant non‐linear relationships with weight of the fish and sea level anomaly (as a proxy for variability of thermocline depth), the effect of these variables on bigeye depth appeared minor, suggesting that vertical movements of bigeye in the Azores during the spring migration may be influenced by food availability in upper water layers.  相似文献   

12.
A total of 1522 yellowfin tuna, Thunnus albacares, were captured, tagged, and released with surgically implanted archival tags (ATs), in six discrete areas of the eastern and central Pacific Ocean, during 2002 through 2019. Of 483 ATs returned (31.7%), 227 ATs from yellowfin (48–147 cm in fork length) at liberty from 32 to 1846 d ( = 300.1 d) provided suitable data sets which were processed using an unscented Kalman filter model with sea-surface temperature measurements integrated (UKFsst) in order to obtain most probable tracks and movement parameters. Although some differences were observed in the movement patterns for fish from within and among the six release areas, 99% of the 227 fish remained within 1000 M of their release locations, indicating limited dispersion and fidelity to release locations. The median movement parameter D, which defines dispersion from the UKFsst model, for the fish released in the offshore equatorial areas showed much greater dispersion rates compared to those for the fish released along the coast or around islands. The rates of mixing of yellowfin among the release areas were found to be dependent on the distances between release areas, with, in general, the greatest mixing occurring among areas in closest proximity, whereas for the two areas offshore Mexico and the two offshore equatorial areas, the rates of mixing were nonexistent or negligible.  相似文献   

13.
为了解热带印度洋大眼金枪鱼(Thunnus obesus)适宜的垂直和水平空间分布范围,采用Argo浮标剖面温度数据重构热带印度洋10℃、12℃、13℃和16℃月平均等温线场,网格化计算了12℃、13℃等温线深度值和温跃层下界深度差,并结合印度洋金枪鱼委员会(IOTC)大眼金枪鱼延绳钓渔业数据,绘制了12℃、13℃等温线深度与月平均单位捕捞努力渔获量(CPUE)的空间叠加图,用于分析热带印度洋大眼金枪鱼中心渔场 CPUE 时空分布和高渔获率水温的等温线时空分布的关系.结果表明,从垂直分布来看,热带印度洋中心渔场延绳钓高渔获率区域垂直分布在温跃层下界以下,在表层以下150~400 m 深度区间.从水平分布来看,12℃等温线,高 CPUE 区域大多深度值<350 m,众数为225~350 m;深度值超过500 m的区域CPUE普遍较低.13℃等温线,高值CPUE出现的地方大多深度值<300 m,众数为190~275 m;深度值超过400 m的区域CPUE普遍较低.全年在15oS以北区域,高渔获率的垂直分布深度更加集中.采用频次分析和经验累积分布函数,计算其最适次表层环境因子分布,12℃等温线250~340 m;13℃等温线190~270 m;12℃深度差30~130 m;13℃深度差0~70 m.研究初步得出热带印度洋大眼金枪鱼中心渔场适宜的水平、垂直深度值分布区间,可以辅助寻找中心渔场位置,同时指导投钩深度,为热带印度洋金枪鱼实际生产作业和资源管理提供理论支持.  相似文献   

14.
太平洋中东部海域大眼金枪鱼胃含物分析   总被引:5,自引:0,他引:5  
  相似文献   

15.
南太平洋长鳍金枪鱼垂直活动水层空间分析   总被引:3,自引:0,他引:3  
为了解南太平洋长鳍金枪鱼(Thunnus alalunga)的垂直活动水层分布特征及其适宜的垂直活动水层深度,采用Argo 数据重构了研究海域次表层20 ℃和25 ℃等温线深度场, 并结合2010年~2012年中水集团南太平洋长鳍金枪鱼延绳钓渔船实际生产统计数据, 绘制了20 ℃和25 ℃等温线深度与长鳍金枪鱼单位捕捞努力量渔获量(CPUE) 叠加图, 分析南太平洋长鳍金枪鱼的垂直活动水层分布特征。结果表明, 研究海域20 ℃和25 ℃等温线深度存在明显的季节性变化, 且长鳍金枪鱼渔场时空分布随着20℃等温线深度的220 m等深线和25℃等温线深度的140 m等深线时空变动而季节性南北移动。长鳍金枪鱼中心渔场主要分布于10S 以南、160E~175E之间, 中心渔场所处海域, 其20 ℃等温线深度多在220 m以深, 超过250 m的海域CPUE 均偏低; 25 ℃等温线深度多在140 m以浅, 浅于80 m的海域则难以形成中心渔场。采用频次分析与经验累积分布函数( ECDF) 相结合的方法, 计算出南太平洋长鳍金枪鱼适宜的垂直活动水层深度为88~238 m。文章初步得出了南太平洋长鳍金枪鱼的垂直分布特征及其适宜的垂直活动水层深度, 可用于指导延绳钓投钩深度, 为中国南太平洋长鳍金枪鱼延绳钓生产作业提供理论参考。  相似文献   

16.
Electronic tagging provides unprecedented information on the habitat use and behaviour of highly migratory marine predators, but few analyses have developed quantitative links between animal behaviour and their oceanographic context. In this paper we use archival tag data from juvenile southern bluefin tuna ( Thunnus maccoyii , SBT) to (i) develop a novel approach characterising the oceanographic habitats used throughout an annual migration cycle on the basis of water column structure (i.e., temperature-at-depth data from tags), and (ii) model how the vertical behaviour of SBT altered in relation to habitat type and other factors. Using this approach, we identified eight habitat types occupied by juvenile SBT between the southern margin of the subtropical gyre and the northern edge of the Subantarctic Front in the south Indian Ocean. Although a high degree of variability was evident both within and between fish, mixed-effect models identified consistent behavioural responses to habitat, lunar phase, migration status and diel period. Our results indicate SBT do not act to maintain preferred depth or temperature ranges, but rather show highly plastic behaviours in response to changes in their environment. This plasticity is discussed in terms of the potential proximate causes (physiological, ecological) and with reference to the challenges posed for habitat-based standardisation of fishery data used in stock assessments.  相似文献   

17.
Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time‐series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light‐based longitude and sea surface temperature‐based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid‐winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11–14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon.  相似文献   

18.
Habitat distribution is critically informative for stock assessment, since incorporating its variabilities can have important implications for the estimation of stock biomass or the relative abundance index. A refined ecological niche model with habitat characteristic parameterization was developed to reconstitute a 3‐D ecological map of bigeye tuna in the Pacific Ocean. We determined the boundaries and hierarchies of oceanographic features and hydrological conditions at horizontal and vertical scales to define the habitat preference of bigeye tuna associated with their feeding and physiological requirements. Ecogeographic projections underlined the depth‐ and region‐specific habitat distribution of bigeye tuna, with noticeable dynamic variations in the response to climate variability. Depths from 300 to 400 m represented layers of the most productive habitat, which was widespread through the equatorial Pacific Ocean and extended to the north‐central Pacific Ocean. The proportion of high‐quality habitat size in the north Pacific had a strictly regular intra‐annual cycle with peaks during the winter. Climate variability appeared to disturb the balance of the regular fluctuations in habitat size in the equatorial Pacific. Habitat hotspots during an El Niño period were characterized by their expansion to the north of the Hawaiian islands, shrinkage in the west for the hotspot band north of the Equator, and an eastern shift for the band south of the Equator. This variability may be the consequence of the incorporated fluctuations of the oxygen minimum zones (OMZ), current systems, and stratification in the open ocean.  相似文献   

19.
大眼金枪鱼(Thunnus obesus)作为一种具有极高经济价值的公海金枪鱼捕捞对象,其资源状况和管理情况一直受到学者的高度关注,而对其生活史特征,尤其是生长特征的研究,是对大眼金枪鱼进行准确资源评估和合理养护管理的基础和关键部分。本研究基于中国科学观察员于2013―2018年收集的印度洋大眼金枪鱼生物学数据,通过体长-体重关系研究其生长特征,并运用线性混合效应模型分析其生长特征在不同年份、季度和海域间的差异。依据收集的8806尾大眼金枪鱼样本,求得其上颌叉长FL和加工重量GT (去掉鳃、尾鳍和内脏后的重量)之间的幂函数关系式,其中条件因子a的估计均值(95%置信区间)为1.07(0.99~1.14)×10~(-5),异速生长参数b的估计值(95%置信区间)为3.08 (3.07~3.10)。本研究构建了7个不同异质性组合的混合效应模型, AIC值和均方根误差值均表明同时考虑年份、季度和区域差异的模型拟合效果最佳。最佳模型的结果表明,印度洋15°S以南和以北海域的大眼金枪鱼个体生长特征差异极小,北部个体仅略重于南部个体;相比于第三和第四季度,相同体长的大眼金枪鱼在第一和第二季度具有更多的重量; 2015年和2016年采集的个体在同样体长时体重更重,而2014年和2017年的大眼金枪鱼体重比其他年份更轻。本研究结果旨在为大眼金枪鱼的资源评估及渔业管理提供基础资料,异质性的研究方法也可以应用于其他近海、远洋渔业种类的生活史特征、种群特征和资源评估研究。  相似文献   

20.
To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days‐at‐liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ~1 mL L?1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ~2 mL L?1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W‐shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ~300–500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night‐time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号