首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Cycling (n = 16) and noncycling (n = 24), early postpartum, suckled beef cows of three breeds were assigned randomly to three treatments: 1) 100-microg injection of GnRH plus a 6-mg implant of norgestomet administered on d -7 before 25 mg of PGF2alpha and implant removal on d 0 (GnRH+NORG); 2) 100 microg of GnRH given on d -7 followed by 25 mg of PGF2alpha on d 0 (GnRH); or 3) 2 mL of saline plus a 6-mg implant of norgestomet administered on d -7 followed by 25 mg of PGF2, and implant removal on d 0 (NORG). All cows were given 100 microg of GnRH on d +2 (48 h after PGF2alpha). Blood sera collected daily from d -7 to d +4 were analyzed for progesterone and estradiol-17beta, and ovaries were monitored daily by transrectal ultrasonography to assess changes in ovarian structures. Luteal structures were induced in 75% of noncycling cows in both treatments after GnRH, resulting in elevated (P < .01) progesterone on d 0 for GnRH+NORG-treated cows. Concentrations of estradiol-17beta (P < .01) and LH (P < .05) were greater on d +2 after GnRH for cows previously receiving norgestomet implants. Pregnancy rates after one fixed-time AI at 16 h after GnRH (d +2) were greater (P < .05) in GnRH+NORG (71%) than in GnRH (31%) and NORG (15%) cows. Difference in pregnancy rate was due partly to normal luteal activity after AI in over 87% of GnRH+NORG cows and no incidence of short luteal phases. The GnRH+NORG treatment initially induced ovulation or turnover of the largest follicle, induction of a new follicular wave, followed later by increased concentrations of estradiol-17beta and progesterone. After PGF2alpha, greater GnRH-induced release of LH occurred in GnRH+NORG cows before ovulation, and pregnancy rates were greater after a fixed-time AI.  相似文献   

2.
In the present study, two experiments were conducted to induce superovulation in goats using passive and active immunization against inhibin. In the first experiment, two groups of goats were given an intravenous injection of either 10 ml normal goat serum (control; n=6) or inhibin antiserum developed against [Tyro30]-inhibin alpha (1-30) (passively immunized; n=6) 48 h before treatment with PGF2alpha. In the second experiment, two groups of goats were immunized with inhibin vaccine (actively immunized; n=5) or Freund's adjuvant (control; n=5) followed by three booster immunizations at 4 week intervals. Blood samples were collected for determination of FSH, LH, estradiol-17beta, and progesterone. Ultrasonography was used to determine ovarian activity at PGF2alpha injection and ovulation rate one week after estrus. In both experiments, there was a significant increase in plasma FSH concentration compared with the controls. However, the pattern of the FSH levels was different between the passively and actively immunized goats. The numbers of follicles in passively and actively immunized goats (22.4 +/- 2.3 and 18.6 +/- 2.1, respectively) were significantly greater than those in the controls (2.6 +/- 0.4 and 2.3 +/- 0.4, respectively). In addition, the ovulation rate was greater in the immunized animals compared with the controls. Therefore, either passive or active immunization against inhibin could be used to induce superovulation in goats.  相似文献   

3.
Luteinizing hormone (LH) surge and follicle rupture act as trigger to start corpus luteum (CL) formation. Thus, we aimed to investigate whether a dominant follicle that has not been exposed to an LH surge can become a functional CL. For this purpose, follicular fluid from the dominant follicles (DF) of cows was aspirated before or after a GnRH-induced LH surge, and subsequent CL formation was observed. Holstein cows were divided into four groups as follows: Luteal phase, a DF was aspirated 7 days after GnRH injection; Pre-LH surge, a DF was aspirated 42 h after PGF(2alpha) injection during the mid luteal phase; Post-LH surge, a DF was aspirated 24 h after GnRH injection following PGF(2alpha); and Intact follicle, ovulation was induced by GnRH injection after PGF(2alpha). Observation of morphological changes in the aspirated follicle using color Doppler ultrasonography and blood sampling was performed on Days 0, 3, 6, and 9 (Day 0 = follicle aspiration). CL formation following DF aspiration was observed only in the Post-LH surge group. In both the Luteal phase and Pre-LH surge groups, however, none of the cows showed local blood flow at the aspirated site or CL formation. Luteal blood flow area, CL volume, and plasma progesterone concentration in the Post-LH surge group were no different from those in the Intact follicle group. The present results clearly demonstrate that rather than follicle rupture, it is the LH surge that is essential for CL formation in cows.  相似文献   

4.
The aim of the present study was to examine the LH response to exogenous estradiol in 4 heifers with ACTH-induced ovarian follicular cysts. During the control experiment, administration of estradiol 24 hr after PGF2alpha in luteal phase heifers resulted in a LH response in all 4 heifers. The LH response was obtained between 16-20 hr after estradiol administration. The peak LH concentration (Mean +/- SEM; 5.1 +/- 0.8 ng/ml) during the control study was significantly different (P<0.05) from the concentration after cyst formation. None of the 4 heifers responded to estradiol after ovarian cyst formation. This result suggests that heifers with ACTH-induced ovarian follicular cysts may have a defective hypothalamio-pituitary response to exogenous estradiol similar to cows with spontaneous ovarian cysts.  相似文献   

5.
Regulation of pulsatile LH secretion by ovarian steroids in the heifer   总被引:1,自引:0,他引:1  
Two experiments were conducted to evaluate relationships among luteinizing hormone (LH), estradiol-17 beta (E2) and progesterone secretion during the preovulatory period in the heifer after prostaglandin F2 alpha (PGF2 alpha)-induced regression of the corpus luteum. A second objective was to elucidate the effects of E2 in regulating LH secretion. In Exp. 1, LH, E2 and progesterone concentrations were determined in serial samples collected during the preovulatory period after PGF2 alpha-induced luteal regression in five Red Angus X Hereford heifers. Progesterone declined to 1 ng/ml by 12 h after the second injection of PGF2 alpha. Frequency of LH pulses increased linearly (P less than .01), whereas no change in amplitude of LH pulses was detected before the preovulatory LH surge. This resulted in a linear increase (P less than .01) in mean LH concentrations. Estradiol also increased in a linear manner (P less than .01), and the rise in E2 was parallel to the increase in mean LH concentrations. In Exp. 2, 12 Angus X Hereford heifers were ovariectomized and administered either 13.5- or 27-cm silastic implants containing E2 at ovariectomy. Four heifers served as nonimplanted controls. Thirty-one days after ovariectomy all heifers were bled at 12-min intervals for 6 h. Frequency of LH pulses declined linearly (P less than .03) while mean LH (P less than .09) and pulse amplitude (P less than .01) increased linearly as E2 dose increased. These results indicate that a reduction in progesterone increases the frequency of LH pulses during the follicular phase of the estrous cycle in cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given 100 microg of GnRH im were determined in three experiments. In Experiment 1, heifers were given GnRH 3, 6 or 9 days after ovulation; 8/9, 5/9 and 2/9 ovulated (P<0.02). Mean plasma concentrations of progesterone were lowest (P<0.01) and of LH were highest (P<0.03) in heifers treated 3 days after ovulation. In Experiment 2, heifers received no treatment (Control) or one or two previously used CIDR inserts (Low-P4 and High-P4 groups, respectively) on Day 4 (estrus=Day 0). On Day 5, the Low-P4 group received prostaglandin F(2alpha) (PGF) twice, 12 h apart and on Day 6, all heifers received GnRH. Compared to heifers in the Control and Low-P4 groups, heifers in the High-P4 group had higher (P<0.01) plasma progesterone concentrations on Day 6 (3.0+/-0.3, 3.0+/-0.3 and 5.7+/-0.4 ng/ml, respectively; mean+/-S.E.M.) and a lower (P<0.01) incidence of GnRH-induced ovulation (10/10, 9/10 and 3/10). In Experiment 3, 4-6 days after ovulation, 20 beef heifers and 20 suckled beef cows were given a once-used CIDR, the two largest follicles were ablated, and the cattle were allocated to receive either PGF (repeated 12h later) or no additional treatment (Low-P4 and High-P4, respectively). All cattle received GnRH 6-8 days after follicular ablation. There was no difference between heifers and cows for ovulatory response (77.7 and 78.9%, P<0.9) or the GnRH-induced LH surge (P<0.3). However, the Low-P4 group had a higher (P<0.01) ovulatory response (94.7% versus 61.1%) and a greater LH surge of longer duration (P<0.001). In conclusion, although high plasma progesterone concentrations reduced both GnRH-induced increases in plasma LH concentrations and ovulatory responses in beef cattle, the hypothesis that heifers were more sensitive than cows to the suppressive effects of progesterone was not supported.  相似文献   

7.
Eighteen cyclic Shiba goats were used in this study. Estrus was synchronized with a single injection of 125 microg of a synthetic analogue of prostaglandin F(2)alpha (PGF(2)alpha) after detection of at least one corpus luteum by B-mode ultrasonography. Blood samples were collected from each animal on days 0, 7 and 21 post-mating for progesterone assay. Animals in estrus were either allowed to be mated by fertile bucks twice during estrus (group I; n=12) or not at all (group II; n=6). Ultrasonographic examinations were performed transrectally or transabdominally using a real-time B-mode scanner equipped with a 7.5 or 5 MHz transducer. All animals exhibited estrus 56.0 +/- 2.7 h after injection of PGF2alpha. The results show that the accuracy of the progesterone assay in diagnosing pregnancy on day 21 after mating was 80% for pregnancy and 100% for non-pregnancy, retrospectively. Ultrasonographic examinations showed that gestational sac and embryos heartbeats were detected on days 20.2 +/- 0.6 and 24.3 +/- 0.7 of gestation, respectively. Placentomes were detected on day 35.4 +/- 1.0 of gestation as small nodules (0.7 +/- 0.2 cm in size). At two months pregnancy, skeletal structures like skull, thorax and long bones were clear. Biparietal diameter of the skull and length of long bones could be used as an estimate of gestational age. The accuracy of detection of fetal number using real-time B-mode ultrasonography was 91.7% on day 60 of gestation. In conclusion, progesterone assay at day 21 post-mating (cut-off value, 1 ng/ml) can be used for pregnancy diagnosis in goats. However, B-mode transrectal ultrasonography was more efficient due to detection of embryo and confirmation of its viability by heartbeats. In addition, fetal number and gestational age could be determined only by ultrasonography.  相似文献   

8.
Cows with ovarian follicular cysts were treated with progesterone to determine whether a reduction in LH concentrations and initiation of ovulatory follicular waves would occur. Cysts were diagnosed using transrectal ultrasonography when single follicular structures > 20 mm or multiple structures > 15 mm in diameter were present for 7 d in the presence of low progesterone concentrations. Three groups were studied: 1) cows with normal estrous cycles (CYC, n = 8); 2) cows with untreated cysts (CYST, n = 7); and 3) cows with cysts treated with two progesterone-releasing intravaginal devices (PRID, n = 8) for 9 d. Ovaries were examined with transrectal ultrasonography, and blood samples were collected daily for analysis of progesterone and FSH. Serial blood samples for determination of mean LH and LH pulse frequency were collected on d 0 (CYST and PRID cows only), 1, 5, 9, and 10. Progesterone concentrations were higher in PRID cows than in CYST cows throughout the PRID treatment period (P < .002). On d 0, LH pulse frequency was similar (P = .10) in PRID (6.6+/-.6 pulses/8 h) and CYST cows (5.1+/-.6 pulses/8 h), but mean LH tended to be higher (P = .054) on d 0 in PRID cows (2.5+/-.2 ng/mL) than in CYST cows (1.9+/-.2 ng/mL). Mean LH and LH pulse frequency decreased (P < .002) by d 1 in PRID cows (1.1+/-.2 ng/mL, 1.8+/-.6 pulses/8 h) compared with CYST cows (2.1+/-.2 ng/mL, 5.6+/-.6 pulses/8 h) and remained lower throughout most of the experimental period. The FSH concentrations were higher (P < .01) in PRID cows than in CYC and CYST cows on d 3 and 4. The increase in FSH concentrations preceded emergence of the PRID-induced follicular wave. All PRID cows and four of seven CYST cows initiated new follicular waves during the period of PRID treatment. Follicular waves were initiated later (P < .05) in CYST cows (d 5.2+/-1.7) and PRID cows (d 5.5+/-.6) than in CYC cows (d 1.8+/-.3). Cysts were smaller (P < .01) at the end of the treatment period in PRID cows compared with CYST cows. No CYST cows ovulated, but all PRID cows ovulated newly developed follicles 3 or 4 d after PRID removal. Treatment with exogenous progesterone reduced LH in cows with cysts, and this was followed by development of normal ovulatory follicles.  相似文献   

9.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

10.
We reported previously that passive immunization against inhibin enhances follicular growth and increases the ovulation rate. However, the ovulation rate was not comparable to the number of follicles. Therefore, the aim of this study was to attempt to increase the ovulation rate by increasing the interval between inhibin immunization and PGF2alpha injection. Five miniature Shiba goats were treated with 10 ml inhibin antiserum (inhibin-AS) developed against [Tyro30]-inhibin alpha (1-30). A control group (n=5) was treated with normal goat serum. All animals were injected intramuscularly with 125 microg PGF2alpha 72 h after treatment to induce estrus and ovulation. Blood samples were collected for hormonal assay and the ovulation rate was determined by laparotomy. In contrast to the control group, there was a significant increase in plasma concentrations of FSH in the immunized group. After luteolysis, plasma concentrations of estradiol-17beta increased markedly to a preovulatory peak about 2 folds higher (P<0.01) than that of controls. In addition, the ovulation rate was greater in the immunized group (14.4 +/- 2.2) than in the control group (2.2 +/- 0.6), and the mean number of follicles > or = 4 mm in diameter was 10.0 +/- 0.8 in the inhibin-AS group compared with 2.4 +/- 0.3 in control group. The present results demonstrate that immunoneutralization of endogenous inhibin increased FSH secretions in miniature shiba goats. The increased FSH secretion enhanced follicular growth and increased the ovulation rate. Additionally, increasing the interval between inhibin-AS and PGF2alpha injections (to 72 h) resulted in a greater ovulation rate compared with the previous protocol (48 h). Therefore, inhibin-AS treatment proved to be an effective alternative to exogenous gonadotropin methods for induction of superovulation in goats.  相似文献   

11.
The objective of this experiment was to evaluate the effect of a single injection of progesterone on the lifespan of ovarian follicular cysts and to examine the fate of follicles that mature following treatment. Lactating Holstein and Jersey cows with ovarian follicular cysts were identified by rectal palpation. The ovaries of cystic cows were then examined by transrectal ultrasonography three times weekly to monitor formation of new follicular cysts. Cows with newly formed follicular cysts were treated either with a single injection of progesterone (200 mg, IM, n = 11) or corn oil vehicle (n = 7). Venous blood samples were collected daily for quantification of progesterone. Blood sampling and ultrasonography continued until ovulation or a new follicular cyst formed. Treatment reduced the lifespan of the cyst by 12 days, from 29.8 +/- 2.3 days in control cows to 17.2 +/- 1.8 days in progesterone-treated cows (P = 0.01). Progesterone treatment also tended to alter the frequency of subsequent follicular events. Ovulation occurred in 4/11 cows that were treated with progesterone whereas none of the vehicle treated cows ovulated (P = 0.07). In conclusion, a single injection of 200mg of progesterone, administered early in the life of an ovarian follicular cyst, shortened its lifespan and in some cases was followed by ovulation of a new follicle.  相似文献   

12.
Prostaglandin F2 alpha (PGF2 alpha) was injected on d 5, 8 or 11 postestrus in ewes to determine how stage of the estrous cycle would affect PGF2 alpha-induced changes in concentrations of ovarian and pituitary hormones and intervals to the onset of estrus and the preovulatory surge of luteinizing hormone (LH). Initial concentrations of progesterone and average values during the 12 h after PGF2 alpha were related positively to the day of cycle on which PGF2 alpha was administered. Patterns of decline in progesterone after injection of PGF2 alpha were similar among the 3 d. Concentrations of LH in plasma increased in a similar manner from 0 to 12 h in all ewes. After 12 h LH continued to increase, plateaued or declined in ewes treated on d 5, 8 or 11, respectively. Initial concentrations of follicle stimulating hormone (FSH) in plasma were related positively to day of treatment. After treatment with PGF2 alpha, FSH increased within 2 h on d 5 but declined by that time on d 8 or 11. Concentrations of estradiol following treatment did not vary with day. The onset of estrus and the preovulatory surge of LH occurred at 36 and 35, 40 and 45, and 48 and greater than 48 h in ewes treated on d 5, 8 or 11, respectively. It is concluded that: 1) the initial increase in LH is dependent on a decrease in plasma progesterone and 2) differences in patterns of secretion of gonadotropins before the preovulatory surge of LH might be caused by differences in progesterone or progesterone:-estradiol ratio when luteal regression is induced on different days of the estrous cycle.  相似文献   

13.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4-6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17beta were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17beta concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17beta, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17beta levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17beta concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

14.
The effect of short-term nutritional supplementation on hormonal and ovarian dynamics was studied in goats. Cycling Shiba goats were divided randomly into maintenance (group M, n=4) and high-energy (group H, n=4) groups. After the detection of the ovulation (Day 0, 1(st) ovulation), group H received a high-energy diet providing 2.5 times of the maintenance energy requirement for 7 days from Day 7 to Day 13 and were administered 2 mg of prostaglandin F(2alpha) (PGF(2alpha)) on Day 10 to induce luteal regression followed by the follicular phase. Follicular and luteal dynamics were monitored using ultrasonography daily or every other day, and blood samples were collected daily from Day 0 to the third ovulation (3(rd) ovulation) following the second ovulation (2(nd) ovulation) induced by PGF(2alpha) administration. Blood samples were also collected at 10-min intervals for 6 h on Day 9 and Day 11 for analysis of pulsatile LH secretion. The mean concentrations of glucose and insulin were significantly (P<0.05) higher in group H than in group M on Days 8, 9, 12, 13 and Days 8, 9 and 10, respectively. For both the 2(nd) and 3(rd) ovulations, no significant difference was detected in ovulation rate between groups M and H. On the other hand, the interpeak interval for wave-like patterns of FSH in group H was significantly (P<0.05) shorter than in group M during the period between the 1(st) and 2(nd) ovulations (4.3 +/- 0.3 vs. 6.5 +/- 1.5 days). The mean LH pulse frequency in group H was significantly (P<0.05) greater than in group M on Day 11 (4.5 +/- 0.6 vs. 3.3 +/- 0.5 pulses/6 h). The present study clearly demonstrated that short-term (7 days) nutritional supplementation promoted pulsatile LH and wave-like FSH secretions in cycling goats. However, no significant increase in ovarian performance was found under such endocrine and metabolic conditions.  相似文献   

15.
Four female Shiba goats were used to determine the influence of body weight loss by dietary restriction on estrous cyclicity. The dietary restriction was started on the day following ovulation. The goats were fed hay cube and straw at an amount of 30% of energy requirement based on weekly body weight measurement. The ovaries were monitored daily by transrectal ultrasonography and blood samples were collected daily by jugular venipuncture for ovarian steroids analysis. After the start of food restriction, all animals lost body weight and entered ovarian quiescence. Intervals to the onset of ovarian quiescence tended to depend on the body weight of each animal at the start of food restriction. The mean concentration of progesterone during the mid-luteal phase (from 7 to 13 days after ovulation) in the last estrous cycle before ovarian quiescence was significantly lower than that in normal estrous cycle of the control period (19.7 +/- 2.8 vs 12.3 +/- 2.2 ng/ml, P<0.05), whereas there was no significant difference in the length of the luteal phase, determined as the period when corpora lutea existed and concentrations of progesterone were equal to or greater than 1 ng/ml (15.8 +/- 1.5 vs 15.0 +/- 2.8 days, P>0.1). A rise of estradiol concentration and follicular growth in the follicular phase following a decline of progesterone level after luteal regression tended to be suppressed at the onset of ovarian quiescence. It seems that the present results are consistent with previous findings that nutritionally induced body weight loss influences the secretion of ovarian steroids and eventually induces ovarian quiescence.  相似文献   

16.
The origin and evolution of preovulatory follicles (POF) in 9 hyperstimulated (polyovulatory) Serrana goats were characterised. After oestrus synchronisation and detection, transrectal ovarian ultrasonography was performed daily during two complete oestrous cycles. Blood samples were taken every 4 h during 24 h after oestrus detection for preovulatory LH peak and twice a week for plasma progesterone determinations. The interovulatory interval of 14 oestrous cycles with double ovulations was 21.1 +/- 0.3 days. The onset of ovulatory follicular wave occurred 4 days (-3.9 +/- 0.3 days, n = 14) prior to the ovulation day (day 0) with a POF size of 6.9 +/- 0.2 mm (n = 28). In goats with ovulations in both ovaries (78.6%), the emergence of the first POF occurred earlier (-4.1 +/- 0.3 days) than the second POF (-3.3 +/- 0.2 days, n = 11, P < 0.05). No differences in the total number of follicles > or = 2 mm were found between the day of POF emergence (4.3 +/- 0.4) and the day before ovulation (3.5 +/- 0.3, P > 0.05). These results showed the existence of a delay between the emergence of first and second POF and suggest a weak dominance effect in goats with double ovulations.  相似文献   

17.
The objective of this study was to determine plasma concentrations of luteinizing hormone (LH), progesterone (P4) and estradiol-17beta (E2) in Mangalica gilts (M), a Hungarian native breed, and compare them with Landrace gilts (L) during the peri- and post-ovulatory periods. The estrous cycle of gilts was synchronised by Regumate feeding, and ovulation was induced with a gonadotropin-releasing hormone (GnRH) agonist. Blood sampling was carried out via indwelling jugular catheters three times a day and in 2-h intervals during a 16-h period after the GnRH application. The concentrations of LH, E2 and P4 were determined by immunoassays. Gilts of both breeds showed a typical gonadotropin and gonadal hormone secretion pattern. Preovulatory E2 peaks were observed on day 2 (M) and day 4 (L) after the last Regumate feeding. Highest E2 concentration was different between M and L breeds (46.5 +/- 5.7 vs. 26.0 +/- 6.8 pg/ml, P < 0.05). Maximum LH levels measured up to 6 h after GnRH were not different between M and L breeds (11.5 +/- 4.1 vs. 6.6 +/- 2.3 ng/ml). Both LH amounts during surge (41.1 +/- 15.9 vs. 27.5 +/- 6.1 ng/ml) and total over LH release (73.4 +/- 22.2 vs. 50.0 +/- 8.7 ng/ml) did not differ significantly between M and L breeds. P4 concentrations started to rise on day 6 after Regumate feeding and increased significantly from 0.6 +/- 0.3 and 0.7 +/- 0.4 ng/ml to maximal 14.0 +/- 2.4 and 11.3 +/- 2.1 ng/ml in M and L breeds, respectively. Mean P4 secretion was higher in M on days 10-15 (12.9 +/- 2.6 vs. 9.3 +/- 2.2 ng/ml; P<0.05). At the same time the number of corpora lutea was lower in M compared to L (10.3 +/-1.5 vs. 17.8 +/- 5.0, P<0.05). In our experiment, there was no evidence that differences in the secretion of analysed hormones during the peri- and post-ovulatory periods are a possible cause of usually lower fecundity in Mangalica gilts.  相似文献   

18.
A study was conducted to determine the effect of charcoal-extracted, bovine follicular fluid (CFF) on plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations, the interval from luteolysis to estrus, and subsequent luteal function in heifers. Fifteen Angus, Simmental and Hereford heifers were allotted by age, weight and breed to a control (C, n = 8) or a CFF (n = 7) group. Heifers received injections of saline or CFF (iv, 8 ml/injection) every 12 h from d 1 (d 0 estrus) through d 5 of the estrous cycle. On d 6, each heifer was injected (im) with 25 mg of prostaglandin F2 alpha (PGF2 alpha). Blood samples were collected every 12 h by venipuncture starting just before the first saline or CFF injection and continuing until estrus. Thereafter, blood samples were collected every other day during the subsequent estrous cycle and assayed for FSH, LH, estradiol-17 beta and progesterone by radioimmunoassay. Injections of CFF had no effect (P greater than .05) on circulating FSH or LH concentrations from d 1 to 5 relative to the C group; however, there was a transient rise (P less than .05) in FSH concentrations 24 h following cessation of CFF injections. This transient rise in FSH was not immediately followed by an increase in plasma estradiol-17 beta concentrations. Although CFF injections did not interfere with PGF2 alpha-induced luteolysis, the interval from PGF2 alpha injection to estrus was delayed (P less than .05) by 5 d in the CFF group compared with the C group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study was to determine and compare the accuracy of palpation per rectum and linear-array ultrasonography for diagnosing follicular vs luteal ovarian cysts in cows. Forty-seven examinations of ovarian cysts from 28 cows were diagnosed by palpation per rectum as either a firm, thick-walled structure (luteal cyst) or a soft, thin-walled structure (follicular cyst) during weekly herd examinations. The ovaries of each cow were then examined by ultrasonography. Ultrasonograms of cysts greater than 25 mm in diameter were diagnosed as luteal or follicular cysts and were recorded on videotape for evaluation by a second clinician. Serum progesterone concentrations at the time of examination were determined by radioimmunoassay and used to classify luteal (greater than 0.5 ng/ml) or follicular (less than or equal to 0.5 ng/ml) cysts. Selection of this discriminatory level was based on response of a proportion of cows with luteal cysts that were given 25 mg of prostaglandin F2 alpha at the time of diagnosis by ultrasonography. Sensitivity and specificity of palpation per rectum for diagnosis of type of ovarian cyst were low (43.3 and 64.7%, respectively). In contrast, sensitivity and specificity of ultrasonography were considerably higher (86.7 and 82.3%, respectively). Agreement between the 2 methods of diagnosis was 57.4%. Overall agreement between the 2 clinicians' diagnoses by ultrasonography was 85.1%. On the basis of our findings, we confirm that luteal and follicular cysts cannot be accurately differentiated by palpation per rectum alone. These data suggest that linear-array ultrasonography is more effective than palpation per rectum for diagnosing type of ovarian cyst in cows.  相似文献   

20.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号