首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleomagnetic study of antarctic deep-sea cores   总被引:1,自引:0,他引:1  
The magnetic inclinations and inten sities of about 650 samples from seven deepsea cores taken in the Antarctic were measured on a spinner magnetometer. This series of measurements provided a magnetic stratigraphy, based on zones of normally or reversally polar ized specimens for each core, which was then correlated with the magnetic stra tigraphy of Cox et al. (1). One core (V16-134) gave a continuous record of the paleomagnetic field back to about 3.5 million years. When selected samples were subject ed to alternatingfield demagnetization, most were found to have an unstable component that was removed by fields of 150 oersteds; all samples from two cores were partially demagnetized in a field of 150 oersteds. The average inclination in these two cores was then in good agreement with the average inclination of the ambient field for the latitude of the core site. It was also found that the intensities of the samples decreased at the points of reversal; this finding is to be expected if, as has been postulated by the dynamo theory, the intensity of the dipole field decreases to zero and builds again with opposite polarity. We believe that the magnetiza tion of the cores results from the pres ence of detrital magnetite, although other magnetic minerals also may be present. Four faunal zones (, X, , and ) have been recognized in these Antarctic cores on the basis of upward sequential disappearance of Radiolaria. The faunal boundaries and reversals consistently have the same relations to one another, indicating that they are both timedependent phenomena. Using previously determined times of reversal, one may date the following events in the cores: 1) Radiolarian faunal boundaries:-X, 2 million years; X-, 0.7 million years; -, 0.4 to 0.5 million years. These dates are in good agreement with ages previously extrapolated from radio metric dates. 2) Initiation of Antarctic diatom ooze deposition, approximately 2.0 mil-lion years ago. 3) First occurrence of ice- rafted detritus, approximately 2.5 million years ago. One can also calculate rates of sedi mentation, which vary in the cores studied from 1.1 to about 8.0 millimeters per 1000 years. Sedimentation rates for the Indian Ocean cores are higher than for the Bellingshausen Sea cores. The near coincidence of faunal changes and reversals in the cores suggests but does not prove a causal relation. We conclude from this study that paleomagnetic stratigraphy is a unique method for correlating and dating deep sea cores, and that future work with such cores may provide a complete or nearly complete record of the history of the earth's magnetic field beyond 4 million years.  相似文献   

2.
The deep-sea sediment oxygen isotopic composition (delta(18)O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this delta(18)O signal was extracted by using the record of delta(18)O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine delta(18)O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the delta(18)O signals of ice volume, deep-water temperature, and additional processes affecting air delta(18)O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.  相似文献   

3.
Numerical modeling of the orbital evolution of interplanetary dust particles revealed that, over the past 1.2 million years, the rate of accretion of dust by Earth has varied by a factor of 2 to 3. These variations display a 100,000-year periodicity and are anticorrelated with Earth's changing orbital eccentricity. Extraterrestrial helium-3 concentrations in a deep-sea sediment core display a similar periodicity but are 50,000 years out of phase with the predicted variations. Also, because collisions between large bodies in the asteroid belt are inevitable, it is expected that large-amplitude stochastic variations on 10(7)- to 10(8)-year time scales would be superimposed on the 10(5)-year periodic variations.  相似文献   

4.
Geomagnetic field strength is expected to affect the production rate of cosmogenic isotopes such as beryllium-10, carbon-14, or chlorine-36. Chlorine-36 data from the Greenland Ice Core Project (GRIP) ice core agree well with a production rate calculation based on a paleomagnetic reconstruction for the past 100,000 years over both long- and short-term variations. A chlorine-36 peak at 38,000 years ago previously found in the beryllium-10 record from the Vostok ice core can be explained by a period of low geomagnetic field intensity.  相似文献   

5.
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.  相似文献   

6.
A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-latitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.  相似文献   

7.
800,000 years of abrupt climate variability   总被引:1,自引:0,他引:1  
We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.  相似文献   

8.
The magnetic compass of European robins does not use the polarity of the magnetic field for detecting the north direction. The birds derive their north direction from interpreting the inclination of the axial direction of the magnetic field lines in space, and they take the direction on the magnetic north-south axis for "north" where field lines and gravity vector form the smaller angle.  相似文献   

9.
The heartbeat of the Oligocene climate system   总被引:2,自引:0,他引:2  
A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.  相似文献   

10.
为探究磁处理技术对含蜡原油降黏效果的影响,利用自行研制的静态磁处理装置研究磁场强度、磁处理温度、磁处理时间对含蜡原油降黏效果的影响;采用偏光显微镜对磁处理前后含蜡原油蜡晶结构进行观察,并分析磁处理含蜡原油的降黏原因。静态磁处理结果表明,最佳磁处理条件是:磁场强度100 mT,磁处理温度49 ℃,磁处理时间10 min,影响磁处理效果的因素按影响程度高低依次是磁处理温度、磁处理强度、磁处理时间;通过显微观察试验发现,磁场促进了含蜡原油中小蜡晶颗粒的聚集,使得大蜡晶颗粒的数量增多,液态烃的流动截面积增大,进而降低了含蜡原油的黏度,改善了含蜡原油的流动性。  相似文献   

11.
Variations in the Earth's Orbit: Pacemaker of the Ice Ages   总被引:2,自引:0,他引:2  
1) Three indices of global climate have been monitored in the record of the past 450,000 years in Southern Hemisphere ocean-floor sediments. 2) Over the frequency range 10(-4) to 10(-5) cycle per year, climatic variance of these records is concentrated in three discrete spectral peaks at periods of 23,000, 42,000, and approximately 100,000 years. These peaks correspond to the dominant periods of the earth's solar orbit, and contain respectively about 10, 25, and 50 percent of the climatic variance. 3) The 42,000-year climatic component has the same period as variations in the obliquity of the earth's axis and retains a constant phase relationship with it. 4) The 23,000-year portion of the variance displays the same periods (about 23,000 and 19,000 years) as the quasi-periodic precession index. 5) The dominant, 100,000-year climatic [See table in the PDF file] component has an average period close to, and is in phase with, orbital eccentricity. Unlike the correlations between climate and the higher-frequency orbital variations (which can be explained on the assumption that the climate system responds linearly to orbital forcing), an explanation of the correlation between climate and eccentricity probably requires an assumption of nonlinearity. 6) It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 7) A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.  相似文献   

12.
辽东山区落叶松大径材林抚育间伐研究   总被引:1,自引:0,他引:1  
倪鹏跃  黄鑫春  梁越 《安徽农业科学》2013,41(8):3468-3468,3474
对落叶松大径材人工林抚育间伐进行实地调查研究,确定了正确的抚育间伐时间、间隔期、强度和方法,并对抚育间伐产生的经济效益进行了分析。  相似文献   

13.
A long record of atmospheric 14C concentration, from 45 to 11 thousand years ago (ka), was obtained from a stalagmite with thermal-ionization mass-spectrometric 230Th and accelerator mass-spectrometric 14C measurements. This record reveals highly elevated Delta14C between 45 and 33 ka, portions of which may correlate with peaks in cosmogenic 36Cl and 10Be isotopes observed in polar ice cores. Superimposed on this broad peak of Delta14C are several rapid excursions, the largest of which occurs between 44.3 and 43.3 ka. Between 26 and 11 ka, atmospheric Delta14C decreased from approximately 700 to approximately 100 per mil, modulated by numerous minor excursions. Carbon cycle models suggest that the major features of this record cannot be produced with solar or terrestrial magnetic field modulation alone but also require substantial fluctuations in the carbon cycle.  相似文献   

14.
Angrites are among the oldest known pristine basaltic meteorites and record the earliest stages of planet formation and differentiation. Our paleomagnetic analysis of three angrites found that they record a past magnetic field of approximately 10 microteslas on the angrite parent body extending from 4564 to at least 4558 million years ago. Because the angrite paleomagnetic record extends beyond the expected lifetime of the early circumstellar disk, these paleofields were probably generated internally on the angrite parent body, possibly by an early dynamo in a rapidly formed metallic core.  相似文献   

15.
Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.  相似文献   

16.
基于河源市5个国家气象观测站1971-2020年日最高气温数据,采用统计学、Mann-Kendall(M-K)突变检验、小波分析等方法分析了河源市各地高温的气候变化特征。结果表明:1971—2020年河源市高温热浪频次、和强度总体呈现增加趋势,各地呈东多西低趋势,高温日数平均增加趋势为0.46d/a,每年平均出现21.5d高温日和4.2次高温热浪事件,高温日和高温热浪事件主要出现在6—9月,高峰期在7-8月。龙川县高温天气出现频繁且持续时间较长,是河源市最热的地方,龙川县的高温日数年际变化存在较强波动性,在1971-1988年和1999-2007年期间有两个上升期,用M-K检验和滑动t检验方法,龙川县高温存在2个突变点。用小波分析方法分析得出河源市各地的高温热浪的周期性并不显著,只有和平县2006-2018年2-6年的周期,紫金县1994-2016年准2年、准5年周期和1982-2006年准12年的周期通过显著性检验。  相似文献   

17.
恒定磁场对小麦种子的生物学效应   总被引:9,自引:0,他引:9  
小麦种子经0.1~0.6T恒定磁场处理后,其种子发芽率,幼苗叶绿素和可溶性蛋白质含量,SOD,CAT活性,根对^32P的吸收,地上和地下部的鲜,干重等均比对照有所提高,表明经一定强度恒定磁场处理,可对小麦种子的生物学性状起积极作用,本文还对小麦种子发芽率与磁感应强度的数学方程进行了讨论。  相似文献   

18.
本试验通过室内培养方法,研究了磁场处理后根瘤菌USDA110(慢生型)和USDA191(快生型)的数量和生长速度的变化.结果表明:磁场对根瘤菌菌落的生长有影响,所有处理均起正效应,但磁场强度和磁处理时间对其影响的效果不同.磁场强度表现为 300 mT效果最显著;磁处理时间以5 min效果最显著.经磁场处理后,根瘤菌的生长速度加快,世代时间缩短.  相似文献   

19.
磁场胁迫对绿豆叶片延迟发光的影响(英文)   总被引:1,自引:0,他引:1  
[目的]研究磁场胁迫对绿豆叶片延迟发光的影响。[方法]以绿豆叶片为试验材料,用BPCL型微弱发光测量仪测量超弱发光的变化,先测量本底和叶片的自身发光,再把叶片分别放入225和450mT磁场中处理10、20、30s后,分别测定其延迟发光曲线,连续测量3次,比较延迟发光曲线和总光子数与自身发光不同之处。每次测量时间为50s,间隔0.1s。试验在恒温17℃暗室的条件下进行,避免外界刺激温度和其他光源对试验结果的影响。[结果]叶片内部对磁场刺激的吸收有其自身的法则,一定的磁场强度和一定的处理时间能够激发绿豆叶片体内延迟发光,但超过一定的胁迫时间,就会减弱叶片体内超弱发光强度;在刺激前期随时间延长磁致发光明显,但超过一定时间限度后随时间推移磁致发光就会越来越弱。[结论]超弱发光的测定是在不影响体系内部环境、不破坏叶片组织结构情况下进行的,其规律性变化是体系内部各组成部分之间相互作用强弱的体现,是整个体系内部生理状态的整体体现,比体系内部某一部分或某一物质的变化更能反映衰老的过程。因此,超弱发光可以作为一个整体性指标,从体系内部各组成部分之间的相互作用上研究叶片的衰老过程,也可以作为一种新的生物物理方法来研究生物的生理功能作用及衰老机理。  相似文献   

20.
The collared lemming in the high-Arctic tundra in Greenland is preyed upon by four species of predators that show marked differences in the numbers of lemmings each consumes and in the dependence of their dynamics on lemming density. A predator prey model based on the field-estimated predator responses robustly predicts 4-year periodicity in lemming dynamics, in agreement with long-term empirical data. There is no indication in the field that food or space limits lemming population growth, nor is there need in the model to consider those factors. The cyclic dynamics are driven by a 1-year delay in the numerical response of the stoat and stabilized by strongly density-dependent predation by the arctic fox, the snowy owl, and the long-tailed skua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号