首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of bacteria inoculation was studied on sunflower growth and phytoremediation capacity in soils contaminated by different levels of nickel. The experimental treatments consisted of four levels of bacteria inoculation – non-inoculated, inoculated by Bacillus safensis, inoculated by Kocuria rosea, and co-inoculated by B. safensis + K. rosea – and four levels of nickel concentrations in the soil – Ni0, Ni150, Ni300, and Ni450 (0, 150, 300, and 450 mg Ni per kg soil, respectively). The treatments were arranged as factorial structure based on a completely randomized design. Results have shown that growth indices, photosynthetic pigments, shoot Fe concentration, root and shoot Zn concentration, and translocation factor decreased as the Ni concentration in soil increased. Shoot and root Ni concentration were higher at Ni450, whereas, the highest Ni uptake by the plant was observed at Ni300 when the sunflower seed was co-inoculated by B. safensis + K. rosea bacteria. Bacteria inoculation significantly increased the plant growth, photosynthetic pigments, and Ni uptake. By B. safensis inoculation, the Fe concentration significantly increased in shoot, while it decreased in root.  相似文献   

2.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

3.
《Journal of plant nutrition》2013,36(12):2175-2188
Abstract

The influence of soil organic matter (OM) in the uptake of cadmium (Cd) by Sorghum will be studied in order to get a better knowledge in the yield and understanding of detoxification mechanisms of soils. Plants were grown for 60 days in a greenhouse pot experiment using a contaminated soil with 4.5 and 35 mg Cd kg?1, in absence and presence of OM. An Irish peat moss (70 g kg?1 of soil) was added as OM. In the presence of OM the biomass production of root and shoot was increased with a positive correlation between biomass increment and contamination level. For experiments with 35 mg Cd kg?1 of soil the biomass production was increased of about 7 times in the presence (vs. absence) of OM. Although the presence of OM had decreased Cd root concentration by decreasing Cd bioavailability in soil, the increase of biomass in presence of OM led to an increase of about 3 times on the Cd amount in shoot, result that can be important in soil phytoremediation.  相似文献   

4.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

5.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

6.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

7.
《Journal of plant nutrition》2013,36(11):1663-1677
Micronutrient uptake and distribution within poppy plants (Papaver somniferum L.) were studied in two pot experiments using a loamy garden soil as substrate. In the first experiment a supplement of increasing cadmium (Cd) concentrations to the substrate and in the second the influence of cultivars and harvest time were studied. At the stage of seed ripening the taproots were already decaying, and the Cd concentration in the shoot reflected the Cd supply in the substrate. In the shoot the highest Cd concentrations were found in seeds. With 24 mg Cd per pot (6 mg kg?1), Cd concentration reached 1.7 mg kg?1.

The four poppy varieties (Edel-Weiss, Marianne, Soma, White Poppy) differed clearly in seed production but reached comparable Cd concentrations of about 1.3 mg kg?1 in the seeds at the second harvest. Seeds made up 2.5 to 12.9% of shoot biomass, but stored 15 to 42% of total Cd in the shoot, which indicates a preferential translocation of Cd into seeds in this plant species.

In addition, Cd supply had a marginal effect on the concentration of micronutrients in seeds and stems + leaves. At the highest Cd supply of 6 mg Cd kg?1 soil a growth reduction of about 25% could be observed.  相似文献   

8.
Abstract

Phytoremediation is a good technique for removing cadmium (Cd) from farmland soils. To remove Cd from these soils effectively, it is necessary for Cd ions to be transported to the shoot organs for later harvest. However, the mechanism of Cd translocation to shoot organs via xylem vessels has not yet been elucidated. We selected oilseed rape plants (Brassica napus L.) and established a method to collect xylem exudates from these plants. After 3 days of Cd treatment (10 µmol L?1 and 30 µmol L?1) the Cd concentrations in the xylem exudates were approximately 6.5 µmol L?1 and 16 µmol L?1, respectively. The detection of Cd in the xylem exudate indicated that Cd was moving to shoot organs via xylem vessels. The effect of these Cd treatments on the amino acid, organic acid and protein composition of xylem exudates from oilseed rape plants was investigated. The level of amino acids and organic acids detected was enough to bind Cd transported via the xylem. Sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis revealed that proteins with molecular weights of 36 kDa and 45 kDa clearly increased in the exudates with Cd treatment. The possibility that these compounds are binding Cd in the xylem exudates was discussed.  相似文献   

9.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

10.
The effects of inoculation of earthworms and arbuscular mycorrhiza separately, and in combination, on Cd uptake and growth of ryegrass were studied in soils contaminated with 0, 5, 10, 20 mg of Cd kg−1 soil. Both earthworms and mycorrhiza were able to survive in all the treatments with added Cd. Earthworm activity significantly increased mycorrhizal infection rate of root and ryegrass shoot biomass. Earthworm activity decreased soil pH by about 0.2 units, and enhanced root Cd concentration and ryegrass Cd uptake. Mycorrhiza inoculation increased shoot and root Cd concentration substantially, and at the highest dosage of 20 mg Cd kg−1 decreased biomass of ryegrass. Inoculation of both earthworms and mycorrhiza increased ryegrass shoot Cd uptake at low Cd concentrations (5 and 10 mg Cd kg−1 soil), when compared with inoculation of earthworms or mycorrhiza alone. In conclusion, earthworm, mycorrhiza and their interaction may have a potential role in elevating phytoextraction efficiency in low to medium level metal contaminated soil.  相似文献   

11.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

12.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

13.
Plant–microorganism associations have long been studied, but their exploitation in agriculture partially or fully replacing chemical fertilizers is still modest. In this study, we evaluated the combined action of rhizobial and plant growth-promoting rhizobacteria inoculants on the yields of soybean and common bean. Seed inoculation with rhizobia (1.2?×?106 cells seed?1) was compared to co-inoculation with Azospirillum brasilense in-furrow (different doses) or on seeds (1.2?×?105 cells seed?1) in nine field experiments. The best in-furrow inoculant dose was 2.5?×?105 cells of A. brasilense seed?1 for both crops. Inoculation with Bradyrhizobium japonicum increased soybean yield by an average 222 kg?ha?1 (8.4 %), and co-inoculation with A. brasilense in-furrow by an average 427 kg?ha?1 (16.1 %); inoculation always improved nodulation. Seed co-inoculation with both microorganisms resulted in a mean yield increase of 420 kg?ha?1 (14.1 %) in soybean relative to the non-inoculated control. For common bean, seed inoculation with Rhizobium tropici increased yield by 98 kg?ha?1 (8.3 %), while co-inoculation with A. brasilense in-furrow resulted in the impressive increase of 285 kg?ha?1 (19.6 %). The cheaper, more sustainable inoculated treatment produced yields equivalent to the more expensive non-inoculated + N-fertilizer treatment. The results confirm the feasibility of using rhizobia and azospirilla as inoculants in a broad range of agricultural systems, replacing expensive and environmentally unfriendly N-fertilizers.  相似文献   

14.
Field experiments were conducted to assess the ability of rhizobacterial inoculants to enhance growth and yield of maize. Performances of two phosphorus (P)-solubilizing bacteria in combination with a fertilizer mixture containing rock phosphate and triple super phosphate (PFM), and five diazotrophs combining either with 150 kg or 100 kg nitrogen (N) ha?1 supplied as urea were compared with non-inoculated-fertilized controls. Shoot P and N and soil available P and N contents were assessed and shoot biomass and ear weights were recorded at harvest. Pseudomonas cepacia resulted in significantly higher available P (51 mg P kg?1 soil), P accumulation (3.6 g kg?1 dry matter) and 13% increase in shoot biomass over control. Azospirillum sp. and dual inoculant comprising Enterobacter agglomerans + Agrobacterium radiobacter led to significantly higher available N (74–94 mg kg?1 soil) and 19 to 26% increase in shoot biomass over the control. However, inoculants did not increase the yield significantly.  相似文献   

15.
A greenhouse pot experiment was carried out to assess the effects of fermented coffee mucilage applied as mulch together with maize leaves on the growth of young coffee plants of two different varieties and on soil microbial biomass indices. The coffee variety Catuai required 32% more water per g plant biomass than the variety Yellow Caturra, but had a 49% lower leaf area, 34% less shoot and 46% less root biomass. Maize and mucilage amendments did not affect leaf area, shoot and root yield, or the N concentration in shoot and root dry matter. The amendments always reduced the water use efficiency values, but this reduction was only significant in the maize+mucilage‐14 (= 14 g mucilage pot?1) treatment. Soil pH significantly increased from 4.30 in the control to 4.63 in the maize+mucilage‐14 treatment. Microbial biomass C increased by 18.5 µg g?1 soil, microbial biomass N by 3.1 µg g?1 soil, and ergosterol by 0.21 µg g?1 soil per g mucilage added pot?1. The presence of mucilage significantly reduced the microbial biomass‐C/N ratio from a mean of 13.4 in the control and maize treatments to 9.3, without addition rate and coffee variety effects. The application of non‐composted mucilage is recommended in areas where drought leads to economic losses and in coffee plantations on low fertility soils like Oxisols, where Al toxicity is a major constraint.  相似文献   

16.
The capacity of microalgae to accumulate heavy metals has been widely investigated for its potential applications in wastewater (bio)treatment. In this study, the ability of Desmodesmus pleiomorphus (strain L), a wild strain isolated from a polluted environment, to remove Cd from aqueous solutions was studied, by exposing its biomass to several Cd concentrations. Removal from solution reached a maximum of 61.2 mg Cd g?1 biomass by 1 day, at the highest initial supernatant concentration used (i.e., 5.0 mg Cd L?1), with most metal being adsorbed onto the cell surface. Metal removal by D. pleiomorphus (strain ACOI 561), a commercially available ecotype, was also assessed for comparative purposes; a removal of 76.4 mg Cd g?1 biomass was attained by 1 day for the same initial metal concentration. Assays for metal removal using thermally inactivated cells were also performed; the maximum removal extent observed was 47.1 mg Cd g?1 biomass, at the initial concentration of 5 mg Cd L?1. In experiments conducted at various pH values, the highest removal was achieved at pH 4.0. Both microalga strains proved their feasibility as biotechnological tools to remove Cd from aqueous solution.  相似文献   

17.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

18.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

19.
We compared acetic, ascorbic, and oxalic acids with ethylenediaminetetraacetic acid (EDTA) to enhance phytoextraction of nickel (Ni), manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) by maize. Except ascorbic acid, acids significantly (P < 0.05) decreased shoot dry weight with maximum (5.60 g pot?1) recorded with ascorbic acid and minimum with oxalic acid (4.06 g pot?1). Maximum ammonium bicarbonate–diethylenetriaminepenta acetic acid (AB-DTPA)–extractable nickel (19.94 mg kg?1) was recorded with EDTA and it was minimum (10.57 mg kg?1) with oxalic acid. The EDTA significantly (P < 0.05) increased AB-DTPA-extractable lead while other acids decreased it. Except acetic acid, other acids significantly (P < 0.05) increased Ni and Zn concentration in shoots with maximum Ni (9.22 mg kg?1) and Zn (37.40 mg kg?1) with EDTA.  相似文献   

20.
Potassium (K) is one of the major essential nutrient elements whose application of organic or nano-chelate-fertilizers has received increased attention recently. Cadmium (Cd) contamination in agricultural soils and environment is increasing due to the over-application of Cd-containing phosphate fertilizers. But few studies have been carried out on the environmental influences of K-nano-chelate fertilizers especially on Cd-polluted soils. Therefore, the effects of K-fertilizer application in different rates (0, 100 and 200 mg kg?1 soil) and forms (KCl, K2SO4 and K-nano-chelate) on Cd content and partitioning in Ocimum basilicum grown on an artificially Cd-contaminated calcareous soil (with 40 mg Cd kg?1 soil) were studied under greenhouse conditions. Cadmium decreased shoot dry weight (SDW), but did not affect root dry weight (RDW) and no consistent trend was observed with applied K. Cadmium increased shoot and root Cd concentration or uptake. KCl and K2SO4 increased shoot Cd concentration compared to that of control, whereas K-nano-chelate did not affect it. In Cd-treated soils the mean value of Cd translocation factor (ratio of Cd concentration in shoots to that of roots) decreased by 60% as compared to that of the control. Application of 100 mg K-K2SO4 and 100 and 200 mg K-nano-chelate increased the Cd translocation factor by 49, 59 and 112% in Cd-treated soils, respectively. In Cd-treated soils, greater amounts of Cd accumulated in roots. K-nano-chelate could mitigate the adverse effect of Cd on SDW and Cd accumulation in plants grown on Cd-polluted soils, so the risk of Cd entrance to the food chain is reduced (however, in Cd-untreated soils, K-nano-chelate increased the Cd translocation factor higher than other K sources). In Cd-polluted soils KCl was the most inappropriate fertilizer that may intensify Cd accumulation in plants. However, it may be useful in the phytoremediation of Cd-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号