共查询到20条相似文献,搜索用时 15 毫秒
1.
Maryam Zahedifar Mahshid Shafigh Zahra Zarei Fereshteh Karimian 《Archives of Agronomy and Soil Science》2016,62(5):663-673
Potassium (K) is one of the major essential nutrient elements whose application of organic or nano-chelate-fertilizers has received increased attention recently. Cadmium (Cd) contamination in agricultural soils and environment is increasing due to the over-application of Cd-containing phosphate fertilizers. But few studies have been carried out on the environmental influences of K-nano-chelate fertilizers especially on Cd-polluted soils. Therefore, the effects of K-fertilizer application in different rates (0, 100 and 200 mg kg?1 soil) and forms (KCl, K2SO4 and K-nano-chelate) on Cd content and partitioning in Ocimum basilicum grown on an artificially Cd-contaminated calcareous soil (with 40 mg Cd kg?1 soil) were studied under greenhouse conditions. Cadmium decreased shoot dry weight (SDW), but did not affect root dry weight (RDW) and no consistent trend was observed with applied K. Cadmium increased shoot and root Cd concentration or uptake. KCl and K2SO4 increased shoot Cd concentration compared to that of control, whereas K-nano-chelate did not affect it. In Cd-treated soils the mean value of Cd translocation factor (ratio of Cd concentration in shoots to that of roots) decreased by 60% as compared to that of the control. Application of 100 mg K-K2SO4 and 100 and 200 mg K-nano-chelate increased the Cd translocation factor by 49, 59 and 112% in Cd-treated soils, respectively. In Cd-treated soils, greater amounts of Cd accumulated in roots. K-nano-chelate could mitigate the adverse effect of Cd on SDW and Cd accumulation in plants grown on Cd-polluted soils, so the risk of Cd entrance to the food chain is reduced (however, in Cd-untreated soils, K-nano-chelate increased the Cd translocation factor higher than other K sources). In Cd-polluted soils KCl was the most inappropriate fertilizer that may intensify Cd accumulation in plants. However, it may be useful in the phytoremediation of Cd-polluted soils. 相似文献
2.
The effect of increasing chloride content in nutrient solution on nutrient composition in root environment, interaction of nutrients in leaves and yield of greenhouse tomato cv. ‘Grace F1’ grown in rockwool were searched. In Experiment I (2004–2005) the levels of 15, 30, 60, and 90 mg Cl·L?1 but in Experiment II (2006) 30, 60, 90 and 120 mg Cl·L?1 of nutrient solution were tested. The sources of chloride were water (9.6–10.7 mg Cl·L?1) and calcium chloride (CaCl2·2H2O) but the rest of nutrients and sodium in all treatments were on the same levels. It was found that increasing content of chloride from 15 to 60 mg Cl·L?1 enhanced the total and marketable fruit yield. Within the range of 60 to 90 mg Cl·L?1 the yield was on the optimum level but the content of 120 mg Cl·L?1 declined it. Increasing chloride content in the nutrient solutions was reflected in rising of chlorine content in leaves. The concentration of chloride above 60 mg C·L?1 reduced the content of nitrogen but above 90 mg C·L?1 declined the content of calcium, sulfur and zinc in leaves. The antagonism between Cl:N, Cl:Ca: Cl:S and Cl:Zn was appeared. More variable interaction were between Cl:K and Cl:B. At the low levels of chloride, from 15 to 60 mg Cl·L?1, potassium and boron content were decreased but at the higher ones, from 90 to 120 mg·L?1, these nutrients had increasing course. It was not found out the effect of chloride contents on macro and microelement contents in nutrient solution emitted from drippers however their content upraising in root medium (rockwool). The highest increase was found out for Na 95.1 and 64.9 % (Exp. I and II - respectively), next for Ca (76.0, 70.1 %), Cu (62.5 and 71.0 %), Cl (43.6, 24.4), B (33.3, 21.0 %), N-NO3 (30.4, 49.6 %), Zn (29.5, 32.8 %), S-SO4 (25.9, 25.5 %), K (24.5, 24.1 %), Fe (19.8, 19.2 %), Mn (17.5, 21.3 %) and Mg (14.9, 11.7). Advantageous effect of chloride on tomato yield justified the need to introduce for the practice adequate chlorine nutrition, and recommend to maintain 60 to 90 mg Cl·L?1 in nutrient solution. The best yield appeared when content of chlorine in leaves (8th or 9th leaf from the top) was in the range 0.48-0.60 % of Cl in d. m. 相似文献
3.
A field experiment was conducted to study the effect of humic acid multinutrient fertilizers like Grow Flow 45H and HA-NPK complex on crop yield, nutrient content and uptake, and nutrient use efficiency of potato. Application of Grow Flow 45H (humic acid multinutrient liquid fertilizer) at recommended dose increased the tuber yield by 9.3% as compared to chemical fertilizer. Nitrogen (N), phosphorus (P) and potassium (K) content of the Grow Flow 45H treated plants were 2.89, 0.33 and 1.58% in shoots and 1.89, 0.21 and 1.03% in tubers, respectively which were significantly higher than the other treatments. Grow Flow 45H increased the N, P and K use efficiencies by 16.4%, 9.3% and 18.3% respectively over chemical fertilizer. Though HA-NPK complex fertilizer (developed in the laboratory) was not significantly different from chemical fertilizer in respect of yield, the contents and uptake, and use efficiencies of N, P and K; however the former was found better than the latter. 相似文献
4.
Omkar Kumar Ashish Maroatrao Latare Shobha Nath Yadav 《Archives of Agronomy and Soil Science》2018,64(10):1407-1418
Foliar application of nickel (Ni) has higher use efficiencies and is preferred over soil application in view of its very low requirement. Pot experiments were conducted during winter season of 2012-2013 and repeated during 2013-2014. Treatments consisted of twelve Ni levels applied as nickel sulphate (NiSO4.7H2O) spray (T1-Ni0%, T2-Ni0.05%, T3-Ni0.1%, T4-Ni0.2%, T5-Ni0.3%, T6-Ni0.4%, T7-Ni0.5%, T8-Ni0.6%, T9-Ni0.7%, T10-Ni0.8%, T11-Ni0.9%,and T12-Ni1.0%,) with recommended doses of fertilizers (RDF) applied in all pots. The result showed that growth and yield attributes viz. plant height, leaf greenness index, number of tillers, number of ears pot-1, number of grains ear-1, straw yield, grain yield and weight of 1000 grains of barley was the maximum with three foliar application of 0.2% of NiSO4.7H2O (T4-Ni0.2%) at 20, 40, and 60 days after sowing (DAS) during both the years. The concentration of Fe, Mn and Zn in grain increased significantly up to T4-Ni0.2% and after this level, a significant decline was recorded during both the years. As regards to the concentration of Ni is concerned, it increased significantly both in grain and straw with increasing levels of Ni spray and the maximum concentration was at T12-Ni1.0%, during both the years. The uptake of Fe, Mn, Cu and Zn in grain of barley increased significantly during both the years up to T4-Ni0.2%,thereafter, it declined significantly with successive increase in dose of Ni spray. Thus 0.2% foliar spray of NiSO4.7H2O significantly increased growth, yield and Fe, Cu, Mn, Zn (micronutrients) status in barley. 相似文献
5.
Hanan H. Omar Batoul M. Abdullatif Molouk M. Al-Kazan Adel M. El-Gendy 《Journal of plant nutrition》2015,38(1):28-40
In this study, the effect of seaweed on the growth of Zea mays L. and Helianthus annuus L. was investigated. Seeds of the plants have been soaked for 6 hours in 0.5% Gracilaria corticata and 1.0% Enteromorpha flexuosa aqueous extract. The presoaked seeds were sown both in soil irrigated monthly with aqueous extract and in soil mixed with powdered seaweeds. Growth parameters of plants were studied after 60 days of growth. The results revealed that both applications of G. corticata and E. flexuosa enhance shoot length, root length, shoot and root dry weights, photosynthetic pigments, carbohydrate and protein contents, and nutrient uptake. The maximum growth was observed with irrigation by E. flexuosa extract. The element constituent [nitrogen (N), phosphorus (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron (Fe3+), manganese (Mn2+), and zinc (Zn2+)] and phytohormones [Indole-3-acetic acid (IAA), gibberellins, and cytokinins] of E. flexuosa extract and powder was higher that of G. corticata. Of the two seaweeds tested, E. flexuosa exhibited better responses. 相似文献
6.
Total dry matter (TDM) and nutrient accumulation, nutrient partitioning, and cumulative growing degree days at the time of maximum nutrient accumulation for two‐row spring barley (Hordeum vulgare L.) are not well quantified under high‐yielding irrigated conditions common in the semi‐arid western United States. Thus, five cultivars of barley were grown under irrigated conditions on a loam soil in the 2015 and 2016 growth seasons to determine these factors. Total nutrient accumulation was greatest at either the soft dough or maturity stage where specific nutrients were greater at one stage as compared to the other. Mean N accumulation was greatest at the soft dough stage (256 kg ha?1) where the regression model accounted for 80% of the variation in the data. Additionally, spike N increased from 91 to 105 kg ha?1 from soft dough to maturity. Specific nutrients (e.g., K) had significantly greater plant (i.e., culms plus leaves) accumulation between soft dough and maturity, 253 and 172 kg ha?1, respectively, where the spike at the same growth stages had an accumulation of 37 and 42 kg ha?1, respectively. In contrast, other nutrients (e.g., P) were remobilized to the spike as noted by the increase from 14 kg ha?1 at soft dough to 26 kg ha?1 at maturity. In addition to nutrient partitioning, linear regressions resulted in well‐correlated models between TDM and total nutrient accumulation (R2 = 0.35–0.88) for measured nutrients. Results from the current study provide critical data on nutrient accumulation as well as regression models for two‐row barley under high‐yielding conditions. This information can be used to improve harvest decisions as well as more accurately predict nutrient cycling in barley cropping systems. 相似文献
7.
Allen V. Barker Md J. Meagy Touria E. Eaton Emad Jahanzad Gretchen Bryson 《Journal of plant nutrition》2019,42(8):928-941
Depleted soil fertility and high-yielding cultivars have been associated with low nutrient contents in vegetables. This study explored if elemental nutrient concentrations in tomato (Lycopersicon esculentum Mill.) can be increased through selection of cultivars and nutritional regimes. Cultivars with different phenotypes of heirloom and modern origins were studied in field experiments in two years. Chemical fertilizer (10-10-10), compost, and an organic fertility regime of soybean meal, bone meal, and potassium sulfate were assessed for their effects on growth and composition of fruits of the cultivars. Differences in nutrient concentrations between modern or heirloom cultivars or among fertility treatments were small or non-significant. Differences among individual cultivars for each element were large with some cultivars having nearly twice the concentrations of nutrients of others and with considerable uniformity in cultivar rankings among the elements. This work suggests that cultivars can be selected for production of nutrient-dense tomatoes. 相似文献
8.
A greenhouse experiment was conducted to evaluate the effect of six rates of filter cake and bagasse ash each separately (0, 20, 40, 60, 80, and 100 ton ha?1) on nutrients uptake and utilization efficiency of wheat in nitisol. Filter cake application was found to better increase in nitrogen (N), sodium (Na), calcium (Ca), potassium (K), and magnesium (Mg) uptake and utilization efficiency while bagasse ash influenced zinc (Zn) and copper (Cu) uptake. Bagasse ash application also reduced the uptake of iron (Fe) and manganese (Mn) by wheat. Multiple regression analysis showed that the soil properties explained selected macronutrients and micronutrients uptake. Exchangeable acidity negatively explained some of the nutrient uptakes. In general, filter cake and bagasse ash were found effective in enhancing the nutrient uptake and utilization efficiency by wheat cultivated in acidic soils such as nitisol. 相似文献
9.
Growth, development, and uptake of essential nutrients as influenced by nitrogen (N) form and growth stage was evaluated for ‘Freedom’ poinsettias (Euphorbia pulcherrima Willd. Ex Klotz.). Treatments consisted of five nitrate (NH4 +):ammonium (NO3 ‐) ratios (% NH4 +:% NO3 ‐) of 100:0, 75:25, 50:50, 25:75, and 0:100 with a total N concentration of 150 mg L‐1. Plants were grown in solution culture for ten weeks under greenhouse conditions. Nutrient uptake data was combined into three physiological growth stages. Growth stage I (GSI) included early vegetative growth (long days). Growth stage II (GSII) began at floral induction and leaf and bract expansion (short days). Growth stage III (GSIII) was from visible bud through anthesis and harvest. Dry weights for all plant parts and height increased as the ratio of NO3 ‐ increased. Leaf area and bract area were maximized with 25:75 and 50:50 N treatments, respectively. Nitrogen treatments significantly affected foliar nutrient concentrations with calcium (Ca++) and magnesium (Mg++) being highest when NO3 ‐ was the predominant N form. Uptake of each macronutrient was averaged across all treatments and divided into physiological growth stages (GS) to identify peak demand periods during the growth cycle. The greatest uptake of NH4 + and NO3 ‐ was from the early vegetative stage to floral induction (GSI). Phosphorus (P), potassium (K+), and Mg++ uptake were greatest from floral induction to visible bud (GSII) and Ca++ uptake remained relatively unchanged through GSI and GSII. Uptake was lowest for all nutrients from visible bud to anthesis (GSIII). Results from this study clearly indicate that peak demand periods for macronutrient uptake existed during the growth cycle of poinsettia. 相似文献
10.
Nutrient leaching from dry (COD) and wet (COW) coffee, sisal (SIS), brewery barley malt (BEB) and sugar cane (FIC) by-products, and linseed (LIC) and niger seed cakes (NIC), and uptake by maize were studied in a pot experiment with tropical Alfisol. After three months, soils were leached to recover labile plant nutrients, and root and shoot biomass was harvested. The leachate from FIC-amended soil had the highest concentration of inorganic P (0.90 μmol L?1), whereas the highest concentrations of potassium (K) (48,088 μmol L?1) and calcium (2566 μmol L?1) were determined in leachates from COD and BEB treatments, respectively. The amendments significantly increased K uptake by maize proportional to the amount of K applied, but the effects for other plant nutrients were small. The results indicated that pre-decomposition of agro-industrial by-products may increase the nutrient release in tropical soils. 相似文献
11.
Field experiments were conducted on cotton to evaluate the different cotton-based intercropping system along with balanced nutrient management practices on enhancing cotton productivity. Cropping systems have been considered as main plots and nutrient management practices have been considered as subplots. The results showed that cotton + onion system recorded the highest cotton equivalent yield (CEY) of 2052 and 1895 kg ha?1 which was on par with cotton intercropped with dhaincha, which recorded 2010 and 1894 kg of CEY ha?1 in both the seasons. Combined application of 100% recommended NPK with bioinoculants (S5) registered highest CEY in both the seasons. Cotton intercropped with dhaincha (M2) recorded highest uptake of N, P, and K. Among the nutrient management practices, application of 100% recommended NPK with bioinoculants (S5) showed highest uptake of N, P, and K. A similar trend was noticed in the post-harvest soil fertility too and it is significantly higher under cotton + dhaincha and application of 100% recommended NPK with bioinoculants treatment compared to 100% recommend NPK alone. It could be concluded from these results that crop productivity can be improved and soil fertility status can be sustained with integrated plant nutrient management practices. 相似文献
12.
城市绿地土壤理化性质退化是城市绿化景观效果提升的主要障碍因子,生物炭和炭基肥施用可有效提高农田土壤肥力和作物产量,但生物炭和炭基肥对城市绿地土壤肥力和绿化植物生长的影响目前还不明确。采用盆栽试验,分别设置生物炭和炭基肥添加0%、0.5%、1%、2%、4%和6%的处理,探究不同用量生物炭和炭基肥施用对绿地土壤物理、化学性质以及大叶罗勒生长的影响。结果表明,与对照相比,添加生物炭降低了土壤容重,而炭基肥对土壤容重影响较小。添加生物炭对土壤pH无显著影响,而添加炭基肥能显著降低土壤pH 0.23~1.09个单位;添加生物炭对土壤碱解氮无显著影响,而添加炭基肥显著增加土壤碱解氮含量4.78~53.55 mg/kg;生物炭和炭基肥均能显著增加土壤有效磷含量,增加幅度分别为1.26~6.05和1.11~8.51 mg/kg;生物炭和炭基肥增加土壤速效钾的幅度分别为22.6~326.9和43.2~174.7 mg/kg。添加生物炭和炭基肥后土壤阳离子交换量较对照分别升高了0.79~1.27和1.16~2.42 cmol/kg。与对照相比,炭基肥能提高大叶罗勒叶绿素含量,生物炭对大叶罗勒叶绿素含量无显著影响。生物炭添加量大于1%时大叶罗勒生物量显著增加,炭基肥添加量小于2%时大叶罗勒生物量显著增加。因此,添加生物炭具有改善绿地土壤物理性质;生物炭和炭基肥均能提高土壤保肥性,改善土壤性状;生物炭和炭基肥均能提高土壤速效氮磷钾养分含量;综合作物生长,推荐炭基肥用量不能超过1%,而生物炭改良园林土壤可与适量氮肥配合施用以增加绿化植物叶绿素含量和观 相似文献
13.
Soil nutrient status and yield of rice as affected by long-term integrated use of organic and inorganic fertilizers 总被引:1,自引:0,他引:1
Nutrient balance is the key component to increase crop yields. Excess and imbalanced use of nutrients has caused nutrient mining from the soil and deteriorated crop productivity and ultimately soil health. Replenishment of these nutrients has a direct impact on soil health and crop productivity. Based on this fact, the present research was conducted to determine the effects of long-term integrated use of organic and inorganic fertilizers on soil nutrient status and yield (grain and straw) in rice. Different combinations of inorganic nitrogen (N) and organic sources (sewage sludge and compost) were applied to the soil. Data revealed that application of mineral NPK in combination with 50% N through compost significantly increased the organic matter content (0.36%), available phosphorus (16.50 kg/ha) and available potassium content (239.80 kg/ha) in soil. The maximum available N (225.12 kg/ha) was found by the substitution of 50% N through sewage sludge. This improvement in soil nutrient status through combined use of organic and inorganic fertilizers produced significant increase in grain and straw yield as compared to inorganic fertilizers alone. Maximum grain (6.96 t/ha) and straw (8.56 t/ha) yields were found in treatment having substitution of 50% N (recommended) through compost @10t/ha. Also, a significant positive correlation was found between soil nutrients and straw and grain yield in rice. Thus the study demonstrated that substitution of 50% inorganic N through compost will be a good alternative for improving soil fertility. 相似文献
14.
氮磷钾和微肥对高肥区夏玉米养分积累、分配及产量的影响 总被引:10,自引:1,他引:10
采用田间试验方法研究了N、P、K、Zn及Mn肥对高肥区夏玉米产量、植株性状及干物质积累的影响.结果表明,在该试验条件下,土壤N、P、K、Zn、Mn的贡献率分别为91.2%、100.3%、96.3%、99.4%、99.9%.玉米吸收的N、P、Zn主要积累在籽粒中,Mn主要积累在叶片和籽粒中,而K在植株各部位的积累相对均匀.在NPK处理的基础上增施Zn、Mn肥,显著降低了植株对P的吸收,而对产量、植株性状和干物质积累的影响不大.土壤中P、Zn、Mn养分含量较高,完全能够满足夏玉米生长发育的要求.NK处理最为合理经济,有效地改善了玉米穗部和植株性状,平均产量达到9 821 kg/hm~2. 相似文献
15.
Przemysław Barłóg 《Journal of plant nutrition》2016,39(1):1-16
High yield of sugar beet require adequate mineral nutrition. To be diagnosed across interacting nutrients using appropriate interpretation models, the plant must be sampled at a critical physiological stage. This study aimed to develop and validate norms at the 7-leaf and well-developed rosette stages, for diagnostic purposes using the Diagnosis and Recommended Integrated System (DRIS) and Compositional Nutrient Diagnosis based on centered log ratios (CND-clr). Data on nutrient concentrations and plant performance were obtained from 409 plots in West-Central Poland. With respect to the growth stages, for physiological and practical reasons, the 7-leaf stage is preferable for diagnostic purposes. At this growth stage, the high-yield subpopulation characterized by higher concentration of potassium and sodium compared to other nutrients. CND-clr indices were closely related to DRIS indices (R2 > 0.93). The CND-clr indices, however, better explained the differences in the white sugar yield within the validated dataset than the DRIS indices. 相似文献
16.
Mohammad Kazem Souri Moin Naiji Mohammad Hossein Kianmehr 《Journal of plant nutrition》2019,42(6):604-614
Manure urea pellets were produced and their nitrogen release rate was evaluated in soil incubation at different water contents of 90, 75, and 60% soil filed capacity (FC). In another experiment, sweet basil growth was evaluated during eight months (with three shoot harvests) under the pellet application. The nitrogen release and pellet dispersion rates were slow after two months or at lower soil water content (60% FC), but they were significant after four months of soil incubation, or at higher soil water content (75 or particularly 90% FC). Application of pelleted urea reduced plant growth and yield at first harvest than urea treatment. However, at second and particularly at third harvest (and the average of three harvests) significant improvement in growth parameters of SPAD value, leaf area, plant height, shoot fresh weight, pot yield, and` leaf N and K concentrations were achieved by application of pelleted urea fertilization. 相似文献
17.
Study aims to investigate the effects of vermicomposts containing oil processing wastes, dairy manure, municipal open market wastes and straw on the growth, nutrient concentrations and nutrient uptakes of corn plant. For this, there different mixtures were prepared. Vermicomposts were applied with the rates of 0, 5000, 10000, and 20000 kg ha?1 to 2 kg soil containing pots. Study was conducted in growth chamber for 2 months. Vermicompost applications increased plant growth, some plant nutrient concentrations and uptake. Also, vermicomposts showed the variation on parameters depending on their mixtures. Results showed that nutrients taken by the plant increased with the vermicompost until 10000 kg ha?1 dose. Most of the nutrient concentrations such as phosphorus, potassium, calcium, magnesium, iron, and manganese (P, K, Ca, Mg, Fe, and Mn) were not increased in plant tissues, whereas uptake of them by the plant showed a significant increase. In addition, residual soil nutrients increased with the increase in vermicompost levels. 相似文献
18.
《Journal of plant nutrition》2012,35(3):418-428
AbstractAlthough crude oil contamination is a constraint for crop production, some plants can develop under crude oil contaminated conditions by utilizing crude oil as nutrients after decomposition. A greenhouse trial was conducted to investigate growth, nutritional composition and enzymatic response of vetiver grass in confronting with crude-oil contamination as affected by gibberellic acid (GA) and Tween 80. Application of GA or co-application of GA with Tween 80 significantly increased mean shoot dry weight. Application of Twee 80 alone or in combination with GA significantly increased mean root dry weight as compared to control which was attributed to the effectiveness of Tween 80 alone or in combination with GA on the removal of total petroleum hydrocarbons from polluted soil. Application of crude oil diminished shoot phosphorus, iron, zinc and manganese uptakes. Application of GA and Tween 80, however, compensated the decrease in nutrient uptakes in vetiver grass resulted from crude-oil contamination. Application of crude oil at both 2 and 4% (W/W) levels increased catalase (CAT) activity and proline (PRO) content. Superoxide dismutase (SOD) activity increased only following the application of 2% crude oil level, while addition of all amendments decreased CAT activity. Addition of GA decreased activity of SOD. None of the studied amendments had a significant effect on PRO content. Application of a combination of GA and Tween 80 under crude oil contamination are recommendable since such treatments not only inhibited adverse effect of crude oil on nutrients uptake but also caused that vetiver grass tolerated high level of crude oil contamination. 相似文献
19.
Jiřina Száková Lukáš Praus Jana Tremlová Martin Kulhánek Pavel Tlustoš 《Archives of Agronomy and Soil Science》2017,63(9):1240-1254
The Czech Republic is characterized by a low Se soil content, resulting in Se deficiency in crops, humans, and animals. This study investigated the response of oilseed rape to foliar application of selenate solution in a microscale field experiment conducted at two locations differing in soil and climatic conditions but with comparable total Se contents. Sodium selenate (Na2SeO4) was applied at two rates (25 and 50 g Se ha?1). The potential effect of Se application on the uptake of essential elements was also evaluated. The foliar Se application resulted in an effective stepwise increase in the Se contents of all the plant components studied (leaves > stems > roots > siliques ~ seeds), as expected. No significant influence of Se fortification on the other investigated macro- and microelements was observed. However, the soil and climatic conditions influenced the Se uptake, such that a higher Se content was observed in plants grown in the most acidic location (Cambisol soil) that had a higher oxidizable carbon content and higher average annual rainfall compared to the less acidic location (Luvisol soil). These observations indicated the necessity to optimize the Se application for the particular soil and climatic conditions to achieve a maximum biofortification effect. 相似文献
20.
Ioanna Manolikaki 《Archives of Agronomy and Soil Science》2017,63(8):1093-1107
This study was conducted to evaluate whether biochar, produced by pyrolysis at 300°C from rice husk and grape pomace (GP), affects plant growth, P uptake and nutrient status. A 3-month period of ryegrass (Lolium perenne L.) cultivation was studied on two Mediterranean agricultural soils. Treatments comprised control soils amended only with compost or biochar, and combinations of biochar plus compost, with the addition of all nutrients but P (FNoP) or without any fertilization at all (NoF). Application of both types of biochar or/with compost, in the presence of inorganic fertilization except P, significantly increased (P < 0.05) dry matter yield of ryegrass (58.9–77.6%), compared with control, in sandy loam soil, although no statistically significant increase was observed in loam soil. GP biochar and GP biochar plus compost amended loam soil harvests gave higher P uptake than control, in the presence of inorganic fertilization except P, whereas in sandy loam soil, a statistical increase was recorded only in the last harvest. In addition, Mn and Fe uptake increased with the addition of the amendments in both soils, while Ca increased only in the alkaline loam soil. Biochar addition could enhance ryegrass yield and P uptake, although inorganic fertilization along with soil condition should receive special attention. 相似文献