共查询到20条相似文献,搜索用时 11 毫秒
1.
水稻突变体对镉的吸收及其亚细胞分布和化学形态特点 总被引:12,自引:0,他引:12
HE Jun-Yu ZHU Cheng REN Yan-Fang YAN Yu-Ping CHENG Chang JIANG De-An SUN Zong-Xiu 《土壤圈》2008,18(3):371-377
Wild-type (Zhonghua 11) and mutant rice (Oryza sativa L.) plants were used to investigate the effect of cadmium (Cd) application on biomass production, to characterize the influx of Cd from roots to shoots, and to determine the form, content, and subcellular distribution of Cd in the roots, leaf sheaths, and leaves of the rice plants. Seedlings were cultivated in a nutrient solution and were treated with 0.5 mmol L^-1 of Cd^2+ for 14 d. The sensitivity of rice plants to Cd toxicity was tested by studying the changes in biomass production and by observing the onset of toxicity symptoms in the plants. Both the wild-type and mutant rice plants developed symptoms of Cd stress. In addition, Cd application significantly (P ≤ 0.01) decreased dry matter production of roots, leaf sheaths, and leaves of both types, especially the mutant. The Cd content in roots of the mutant was significantly (P ≤0.05) higher than that of the wild-type rice. However, there was no significant difference in the Cd content of roots, leaf sheaths, and leaves between the wild-type and mutant rice. Most of the Cd was bound to the cell wall of the roots, leaf sheaths, and leaves, and the mutant had greater Cd content in cell organelles than the wild type. The uneven subcellular distribution could be responsible for the Cd sensitivity of the mutant rice. Furthermore, different chemical forms of Cd were found to occur in the roots, leaf sheaths, and leaves of both types of rice plants. Ethanol-, water-, and NaCl-extractable Cd had greater toxicity than the other forms of Cd and induced stunted growth and chlorosis in the plants. The high Cd content of the toxic forms of Cd in the cell organelles could seriously damage the cells and the metabolic processes in mutant rice plants. 相似文献
2.
硫对超积累东南景天镉累积、亚细胞分布和化学形态的影响 总被引:8,自引:0,他引:8
采用差速离心技术和化学试剂逐步提取法研究了硫对超积累东南景天镉累积、亚细胞分布和化学形态的影响。结果表明,增硫处理(S2和S3)显著提高超积累东南景天根、茎和叶的镉含量、累积量及整株累积总量。镉在超积累东南景天根、茎和叶中的含量和分配比例为F1(细胞壁)F3(可溶性部分)F2(细胞器与膜),细胞壁(F1)是Cd在超积累东南景天细胞内的主要结合位点;超积累东南景天根、茎和叶F1、F2、F3组分中的镉含量随着硫水平的增加而增加,但分配比例变化不一致;超积累东南景天植物体内镉形态以氯化钠提取态(FNacl)、醋酸提取态(FHAc)和水提取态(FW)占优势。增施硫处理,提高超积累东南景天根FNacl、FHAc和FW提取态镉含量和分配比例,降低FE和FHCl提取态镉含量和分配比例;茎FNacl和FHAc提取态镉含量和分配比例增加,FW、FE和FHCl提取态镉分配比例降低;叶FNacl、FHAc和FW提取态镉的含量增加,但对其分配比例影响不大。 相似文献
3.
Effects of drought on the accumulation and redistribution of cadmium in peanuts at different developmental stages 总被引:1,自引:0,他引:1
This study aimed to investigate the impact of water deficit on cadmium (Cd) accumulation in peanut plants during different developmental stages. Two contrasting peanut cultivars, Fenghua 1 (high-biomass cultivar) and Silihong (low-biomass cultivar), were grown in a Cd-contaminated arable soil under different water regimes. The two cultivars differed from each other in seed Cd concentrations. Fenghua 1 exhibited lower Cd concentrations in the seeds than Silihong, which is associated with root-to-shoot Cd translocation. Drought plays different roles in the translocation and redistribution of Cd in peanut plants during different developmental stages. At the seedling stage, drought decreased shoot Cd concentrations for both cultivars, whereas at the pod-filling and pod-ripened stages, drought increased shoot Cd concentrations. Similarly, drought stress reduced pod Cd concentrations at the pod-filling stages and increased at the pod-ripened stages. Seed Cd concentrations in mature plants were increased by drought for both cultivars. Seed Cd concentrations were negatively correlated with biomasses of shoots and pods, but positively correlated with Cd concentration in the shoots and pods. Increased seed Cd concentrations under drought stress might result from the concentration effects due to drought induced decrease of plant growth. 相似文献
4.
外源Cd在不同品种水稻组织中的细胞分布和化学形态特征研究 总被引:3,自引:0,他引:3
采用水培试验,以低镉(Cd)积累水稻品种‘D83A/R527’和高Cd积累水稻品种‘辐优838’为供试材料,设置3个Cd浓度(5μmol·L~(-1)、10μmol·L~(-1)、25μmol·L~(-1))处理,从Cd亚细胞及化学形态分布角度研究了不同基因型水稻品种的Cd积累特性,为探讨水稻对Cd的吸收积累生理机制提供科学依据。结果表明:(1)水稻‘D83A/R527’的根系和茎叶Cd含量及根系-茎叶转移系数均显著低于‘辐优838’(P0.05)。(2)两水稻根系各亚细胞组分中Cd含量表现为可溶部分(F3)细胞壁(F1)细胞器(F2),茎叶表现为细胞壁(F1)可溶部分(F3)细胞器(F2);‘D83A/R527’根系和茎叶细胞壁Cd的质量分数(36.76%~51.75%)高于‘辐优838’(31.29%~49.07%)。(3)两水稻品种Cd化学形态含量均表现为氯化钠提取态(F_(NaCl)-Cd)醋酸提取态(F_(HAc)-Cd)去离子水提取态(F_W-Cd)乙醇提取态(F_E-Cd)盐酸提取态(F_(HCl)-Cd);随Cd处理浓度的增加,‘D83A/R527’根系F_E-Cd和F_W-Cd(活性态Cd)质量分数逐渐下降(24.75%~18.34%),‘辐优838’活性态Cd逐渐上升(27.18%~28.68%),茎叶F_(HAc)-Cd和F_(HCl)-Cd(惰性态Cd)质量分数(32.41%~38.98%)逐渐上升且高于‘辐优838’(28.44%~31.22%),‘D83A/R527’根系和茎叶F_(NaCl)-Cd质量分数(32.71%~51.17%)均高于‘辐优838’(32.14%~47.63%)。综上,‘D83A/R527’水稻幼苗Cd积累量低;与‘辐优838’相比,‘D83A/R527’水稻幼苗根系和茎叶细胞壁质量分数较高,"活性态"Cd质量分数较低,"惰性态"Cd则更高,表明‘D83A/R527’水稻对Cd有更强的固持能力。 相似文献
5.
A survey in Japan showed that approximately 7% of eggplant fruits contain cadmium (Cd) concentrations above the international limit for fruiting vegetables. This study was conducted to develop a method to reduce Cd concentration in eggplant fruits. We determined Cd concentrations in eggplants grown on different rootstocks in Cd-polluted soil, unpolluted soil and nutrient culture. Grafting onto Solanum torvum reduced eggplant fruit Cd concentrations by 63–74% in Cd-polluted soil and unpolluted soil compared with grafting onto Solanum melongena and Solanum integrifolium . Stem and leaf Cd concentrations of scions on S. torvum were approximately 30% of those on S. integrifolium , so Cd translocation from roots to shoots was apparently reduced in plants grafted onto S. torvum . Stem and leaf Cd concentrations of S. torvum were also lower than those of cv. Senryou2 ( S. melongena ) and cv. Daitarou ( S. melongena ); thus, Cd translocation from roots to shoots was also reduced in self-rooted S. torvum plants. The Cd concentration of xylem sap in stems of S. torvum was 22% of that in stems of S. melongena , so the reduced Cd translocation from root to shoot could be accounted for by differential loading of Cd into the xylem in roots. We have developed a practical method for reducing the Cd concentration of eggplant fruits by grafting onto S. torvum rootstock. Further investigation is needed to elucidate the mechanism responsible for the low Cd translocation characteristics of S. torvum . 相似文献
6.
石灰与磷肥可以降低华南5种常见蔬菜对镉的吸收量 总被引:7,自引:0,他引:7
A pot experiment was conducted in artificially Cd-contaminated (5 mg Cd kg-1) soils to investigate the feasibility of using lime (3 g kg-1) or phosphate (80 mg P kg-1) to mitigate uptake of Cd by vegetables.Five common vegetables in South China,including lettuce (Lactuca sativa L.var.ramosa Hort.),Chinese cabbage [Brassica rapa L.subsp.Chinensis (L.) var.parachinensis (L.H.Bailey) Hanect],Chinese broccoli (Brassica oleracea L.var.albiflora Kuntze),white amaranth (Amaranthus tricolor L.) and purslane (Amaranthus viridis L.),were grown in the soils and harvested after 60 d.The results showed that liming significantly reduced Cd uptake by most vegetables by 40%-50% (or a maximum of 70%),mainly due to immobilization of soil Cd.Increased availability of Ca in the soil might also contribute to the Cd uptake reduction as a result of absorption competition between Ca and Cd.Liming caused biomass reduction in white amaranth and purslane,but did not influence growth of the other vegetables.Phosphate decreased Cd uptake by vegetables by 12%-23%.Compared with lime,phosphate decreased,to a smaller extent,the bioavailability of Cd in most cases.Phosphate markedly promoted growth of vegetables.Changes in soil chemistry by adding lime or phosphate did not markedly influence nutrient uptake of vegetables except that lime increased Ca content and phosphate increased P content in shoots of the vegetables.The results suggested that a proper application of lime could be effective in reducing Cd uptake of vegetables,and phosphate could promote growth of the vegetables as well as alleviate the toxicity of Cd. 相似文献
7.
采用室内水培法,分别研究了镉(Cd2+)、汞(Hg2+)单一胁迫对花生种子萌发与幼苗的主要生理生化特性的影响。结果表明,当Hg2+浓度达到5 mg/L、Cd2+浓度达到或大于20 mg/L时出苗率下降;当Hg2+浓度达到25 mg/L、Cd2+浓度大于10 mg/L时不仅显著抑制生长,而且根系变黑腐烂;不同浓度Hg2+与叶绿素a的含量呈显著负相关,而与叶绿素b的含量呈显著正相关;不同浓度Hg2+与花生叶片过氧化氢酶活性呈极显著正相关。过氧化氢酶活性和叶绿素含量都与Cd2+浓度呈极显著负相关。 相似文献
8.
Two plant species, tomato (Lycopersicon esculentum Mill.) and bitter gourd (Momordica charantia), were used for in‐depth studies on the dynamics of silicon (Si) uptake and translocation to the shoots and compartmentation of Si in the roots. The experiments were conducted under controlled environmental conditions in nutrient solutions, which were partly amended with 1 mM Si in the form of silicic acid. At harvest, xylem exudates were collected, and Si concentrations and biomass of roots and shoots were determined. Mass flow of Si was calculated based on the Si concentration of the nutrient solution and transpiration determined in a parallel experiment. Plant roots were subjected to a fractionated Si analysis, allowing attributing Si to different root compartments. Silicon concentrations in the roots compared to the shoots were higher in tomato but lower in bitter gourd. A more ready translocation from the roots to the shoots in bitter gourd was in agreement with Si concentrations in the xylem exudates which were higher than in the external solution. In tomato, the xylem‐sap Si concentration was lower than in the nutrient solution. Calculated Si mass flow to the root exceeded Si uptake in tomato, which was consistent with the measured accumulation of Si in the root water‐free space (WFS). In contrast, Si concentration in the root WFS was lower than in the nutrient solution in bitter gourd, reflecting the calculated Si depletion at the root surface based on the comparison of Si mass flow and Si uptake. Within the roots, more than 80% of the total Si was located in the cell wall and less than 10% in the cytoplasmic fractions in tomato. In bitter gourd, between 60% and 70% of the total root Si was attributed to the cell‐wall fraction whereas the proportion of the cytoplasmic fraction reached more than 30%. Our results clearly confirm that tomato belongs to the Si excluders and bitter gourd to the Si‐accumulator plant species for which high Si concentrations in the cytoplasmic root fraction appear to be characteristic. 相似文献
9.
赤泥施用量对镉污染稻田水稻生长和镉形态转化的影响 总被引:2,自引:0,他引:2
通过盆栽试验,研究了不同赤泥施用量对水稻产量、土壤中镉生物有效性及其形态和糙米镉含量的影响。结果表明,适宜的赤泥施用量能提高水稻有效穗数和促进水稻生长,实现水稻增产,与不施赤泥处理相比,0.75%(W/W)赤泥处理(RM-3处理)的水稻株高、有效穗数和产量分别提高了5.02%、1.12%和6.93%。随着赤泥施用量的增加,土壤pH值增加,土壤交换态Cd含量逐渐减少,碳酸盐结合态、铁锰氧化物结合态和残渣态Cd含量逐渐增加,但对有机结合态Cd含量的影响不明显,相比不施赤泥处理,1.25%(W/W)赤泥处理(RM-5处理)的土壤交换态Cd含量下降了31.6%(P<0.01),碳酸盐结合态、铁锰氧化物结合态和残渣态Cd含量分别增加了16.3%、22.5%和8.7%(P<0.01)。水稻糙米中Cd的含量随赤泥施用量的增加而降低,当赤泥施用量达到或高于0.5%(W/W)时,糙米Cd含量达到国家粮食卫生标准,综合考虑水稻产量、土壤修复效应和糙米品质,本试验Cd污染程度的稻田土壤上赤泥的适宜施用量为0.75%(W/W)。 相似文献
10.
黑麦草对硒的吸收、分配与累积 总被引:9,自引:4,他引:9
用营养液培养方法研究了黑麦草(Lolium.multiflorum,Lamaubada)对硒的吸收、分配和累积特征以及硒对黑麦草生物量的影响,以探讨黑麦草对硒的吸收和利用规律。结果表明,不同SeO32--Se浓度处理的黑麦草在不同生育期的硒含量大小顺序均表现为分蘗期拔节期抽穗期苗期,且其差异在低硒浓度([Se4+]0.05.mg/L)时表现不明显,在非中毒范围内,黑麦草体内含硒量随供硒水平的提高而增加。在不同硒浓度处理中,黑麦草不同器官的硒含量大小顺序均为根叶茎,黑麦草吸收的SeO32--Se大部分在根部累积,少部分转移到茎与叶中,SeR/SeL3,SeR/Ses4。当营养液中加入低浓度硒([Se4+]=0-0.1.mg/L)时促进了黑麦草的生长,其生物量随外源硒浓度的增大而增加;高浓度硒([Se4+]1.0.mg/L)时抑制黑麦草的生长甚至引起中毒死亡。抽穗期黑麦草对硒的阶段累积率最大,达40.42%。 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(8):977-989
The extractable silicon (Si) using selected extractants irrespective of the soils used for the study was in the order of 0.005 M sulfuric acid (H2SO4) > 0.1 M citric acid > N sodium acetate (NaOAc) 2 > N NaOAc 1 > 0.5 M acetic acid 3 > 0.5 M acetic acid 2 > 0.5 M acetic acid 1> 0.01 M calcium chloride (CaCl2) > 0.5 M ammonium acetate (NH4OAc) > distilled water 4 > distilled water 1. Silicon extraction with N NaOAc 1 appeared to be the most suitable for evaluating Si, followed by extraction with 0.5 M acetic acid 2 and N NaOAc 2. These extractants showed the greatest degree of significant correlation with the percentage of Si in straw and grain, as well as Si uptake by straw and grain. These methods also rapidly extract soil Si in comparison to the other methods and appear to be the most suitable for routine soil testing for plant-available Si in the rice soils of southern India. 相似文献
12.
Leila Marzban Davoud Akhzari Ali Ariapour Behrooz Mohammadparast 《Journal of plant nutrition》2017,40(15):2127-2137
A pot culture experiment was performed to study the effect of cadmium stress (Cd stress) on seedling growth, physiological traits, and remediation potency of Avena fatua, Lathyrus sativus, and Lolium temulentum. The seedlings of these native rangeland plant species were treated with 0, 2, 4, and 6 mM cadmium nitrate concentrations. Based on the results of analysis of variance (p < 0.05), the shoot height, shoot dry weight, root length, root dry weight, root: shoot ratio, total chlorophyll content, soluble sugars, and protein contentof A. fatua, L. sativus, and L. temulentum significantly decreased with increased cadmium concentrations. Generally, translocation factor (TF) and tolerance index (TI) decreased significantly as the concentration of cadmium increased. The maximum TF and TI of studied plants in various concentrations of Cd were observed in L. temulentum followed by L. sativus and A. fatua. The root concentration factor (RCF) values of all studied plants were higher than 1 under different cadmium concentrations. Our results indicate that Lolium temulentum could be labeled as an accumulator of Cd asthe values of TF and RCF are greater than 1. A. fatua and L. sativus showed a potential to be used in the phytoremediation of Cd-contaminated soils. 相似文献
13.
Neda Dalir Najafali Karimian Jafar Yasrebi Abdolmajid Ronaghi 《Archives of Agronomy and Soil Science》2013,59(4):559-571
The objective of the investigation was to evaluate the effect of applied phosphorus (P) and cadmium (Cd) on Cd chemical forms determined by sequential extraction and the relationship between these forms and plant responses, i.e., dry weights, concentration, and total uptake of Cd and P in a greenhouse experiment. Treatments consisted of five levels of Cd (5, 10, 20, 40 and 80 mg kg?1 soil as cadmium sulfate) and four levels of P (0, 15, 30 and 60 mg kg?1 soil as monocalcium phosphate), which were added to the soil and left to equilibrate for 1 month under greenhouse conditions. Spinach seeds (Spinacea oleracea L., cv Viroflay) were sown and then grown for 8 weeks. The chemical composition in the aerial part of the pant and soil was determined. Application of Cd decreased plant dry matter and increased Cd concentration in the plant, whereas at each level of applied Cd, P increased plant dry matter and decreased plant Cd concentration. All chemical forms of Cd in soil, as determined by a fractionation method, were increased following Cd application, the highest being the carbonatic form. Phosphorous application decreased exchangeable and carbonatic forms of Cd, whereas it increased other forms. 相似文献
14.
铅在粘土矿物上的吸附特征及其与金属氧化物的关系 总被引:6,自引:0,他引:6
A model for simulating cadmium transport in a soil-plant system was built using a commercial simulating program named Powersim on the basis of input-output processes happening in the soil-plant system.COnvective and dispersive transport processes of cadmium in soil profile are embedded.Simulations on a daily base have been done up to a total simulating time of 250 years,Results show that applications of sewage sludge and fertilizer at the simulated rates would only cause slight cadmium accumulations in each layer of the soil,and cadmium accumulation would be levelling off,reaching an equilibrium concentrations layer by layer downward after certain time.The time scale to reach an equilibrium concentration varies from 10 years for the top three layers to over 250 years for the bottom layers.Plant cadmium uptake would increase from 52um m^-2 under initial soil cadmium concentrations to 65ug m^-2 under equilibrium soil cadmium concentrations,which would not exceed the maximum allowable cadmium concentration in wheat grains.Main parameters which influence cadmium accumulation and transport in soil are total cadmium input,rainfall,evaporation,plant uptake and soil properties. 相似文献
15.
Corn and wheat plants were grown in a nutrient culture solution at four levels of phosphorus (0,0.12,0.60 and 3.0mmol L^-1) and two levels of cadmium(0 and 4.0umol L^-1) in greenhouse for a 18-day period.The concentrations of phosphorus and cadmium in cell wall,cytoplasm and vacuoles of roots and leaves were examined by cell fractionation techniques.With increasing phosphorus in medium,the contents of P in cell wall,cytoplasm and vacuoles of corn and wheat roots and leaves increased.The highest content of P was observed in cell wall,next in vacuoles,and the lowest in cytoplasm.The wheat subcellular fractions in both roots and leaves hab higher concentrations of phosphorus than those of corn.Increasing phosphorus in medium significantly inhibited the intracellular Cd accumulation in both species,However,at P concentration up to 3.0mmol L^-1,the Cd content in cell wall was increased.Increasing phosphorus resulted in reduction of the subcellular Cd content in cell wall was increased.Increasing phosphorus resulted in reduction of the subcellualr Cd content in corn and wheat leaves.Compared with corn,the wheat roots had a higher Cd content in the cell wall and vacuoles and a lower in cytoplasm,while in leaf subcellular fractions the wheat cell had a higher Cd content in its vacuoles and a lower one in its cytoplasm,The results indicate that phosphorus may be involved in sequestration of Cd ionic activity in both cell wall and vaculoes by forming insoluble Cd phosphate. 相似文献
16.
Abstract We characterized and quantified the chemical form of cadmium (Cd) in intercellular solutions of the apparent free space (AFS) of roots and leaves of bush bean plants. Plants were grown in sand and treated daily for five days with Hoagland nutrient solution containing, respectively, 0.5 and 1 mM Cd(NO3)2. The intercellular solution was collected by infiltration‐extraction procedure using successively distilled water, 5 mM CaCl2, and 5 mM EDTA in order to collect separately the water soluble, exchangeable, and complexed Cd. The ability of extradant solutions to remove Cd from the AFS of roots and leaves was: H2O < CaCl2 ? EDTA, confirming that most of Cd was bound at the cell wall. Voltarimetric technique showed that water‐soluble Cd in intercellular solutions of the root and leaf tissues was as the Cd2+ ion, suggesting that Cd might be taken up by the roots and transported to leaves as the free ion. 相似文献
17.
Sedigheh Safarzadeh Abdolmajid Ronaghi Najafali Karimian 《Archives of Agronomy and Soil Science》2013,59(2):231-245
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots. 相似文献
18.
19.
利用植物生长室水培试验和温室土培盆栽试验相结合,研究了Cu对Zn、Cd超积累植物伴矿景天生长及Zn、Cd吸收性的影响。水培试验结果显示,0.31~50μmol/L Cu处理14天对伴矿景天生长及对Zn、Cd吸收性没有显著影响;但100μmol/L Cu处理显著抑制植物生长,降低地上部Zn、Cd及根中Cd浓度,对根中Zn浓度变化没有显著影响。盆栽试验结果发现,在土壤Cu仅为3.61 mg/kg时伴矿景天生长不良,外加Cu显著促进其生长并随Cu浓度升高效应增加;但施用3 mmol/kgEDDS和再次外加250 mg/kg Cu处理使伴矿景天因体内Cu积累量过高而导致明显毒害,地上部Cu最高达1 068 mg/kg。可见低量Cu处理可促进伴矿景天生长,利于植物对土壤Zn、Cd的吸取修复,但土壤中Cu浓度过高将抑制Zn、Cd超积累植物的生长,降低其Zn、Cd吸收能力,在利用该Zn、Cd超积累植物修复高Cu的Zn和Cd污染土壤时应采取适当措施降低Cu毒害效应。 相似文献
20.
The effect of calcium (Ca) on cadmium (Cd) accumulation in plants was investigated using Gamblea innovans Sieb. & Zucc., a deciduous tree species that is an accumulator plant for Cd and zinc (Zn). Saplings of G. innovans were grown for 3 months and fed with solutions containing only Ca (+Ca), both Ca and Cd (Ca+Cd), or only Cd (+Cd). The Ca concentration in roots was higher in both treatments containing Cd alone (+Cd) and Ca+Cd compared to roots treated with Ca alone (+Ca). In addition, the Cd concentration in roots was higher in the Ca+Cd treatment than the Cd treatment. This showed that the presence of Ca2+ in the rhizosphere relates with Cd uptake into roots. The result that the transport of Cd from roots through stem to leaves was suppressed by Ca treatment indicates that the presence of Ca regulates Cd transport from the roots. A clear correlation between Cd and Zn concentrations in leaves suggests a possibility that the Cd treatment accelerates the transport of Zn into leaves via the same protein transporter in this species. 相似文献