首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

2.
Soils receiving organic manures with and without chemical fertilizers for the last 7 yr with pearlmillet–wheat cropping sequence were compared for soil chemical and biological properties. The application of farmyard manure, poultry manure, and sugarcane filter cake alone or in combination with chemical fertilizers improved the soil organic C, total N, P, and K status. The increase in soil microbial‐biomass C and N was observed in soils receiving organic manures only or with the combined application of organic manures and chemical fertilizers compared to soils receiving chemical fertilizers only. Basal and glucose‐induced respiration, potentially mineralizable N, and arginine ammonification were higher in soils amended with organic manures with or without chemical fertilizers, indicating that more active microflora is associated with organic and integrated system using organic manures and chemical fertilizers together which is important for nutrient cycling.  相似文献   

3.
Conservation tillage (no-till and reduced tillage) brings many benefits with respect to soil fertility and energy use, but it also has drawbacks regarding the need for synthetic fertilizers and herbicides. Our objective was to adapt reduced tillage to organic farming by quantifying effects of tillage (plough versus chisel), fertilization (slurry versus manure compost) and biodynamic preparations (with versus without) on soil fertility indicators and crop yield. The experiment was initiated in 2002 on a Stagnic Eutric Cambisol (45% clay content) near Frick (Switzerland) where the average annual precipitation is 1000 mm. This report focuses on the conversion period and examines changes as tillage intensity was reduced. Soil samples were taken from the 0–10 and 10–20 cm depths and analysed for soil organic carbon (Corg), microbial biomass (Cmic), dehydrogenase activity (DHA) and earthworm density and biomass. Among the components tested, only tillage had any influence on these soil fertility indicators. Corg in the 0–10 cm soil layer increased by 7.4% (1.5 g Corg kg−1 soil, p < 0.001) with reduced tillage between 2002 and 2005, but remained constant with conventional tillage. Similarly, Cmic was 28% higher and DHA 27% (p < 0.001) higher with reduced than with conventional tillage in the soil layer 0–10 cm. In the 10–20 cm layer, there were no significant differences for these soil parameters between the tillage treatments. Tillage had no significant effect on total earthworm density and biomass. The abundance of endogeic, horizontally burrowing adult earthworms was 70% higher under reduced than conventional tillage but their biomass was 53% lower with reduced tillage. Wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) yield decreased by 14% (p < 0.001) and 8% (p < 0.05), respectively, with reduced tillage, but sunflower (Helianthus annuus L.) yield was slightly higher with reduced tillage. Slurry fertilization enhanced wheat yield by 5% (p < 0.001) compared to compost fertilization. Overall, Corg, Cmic, and DHA improved and yields showed only a small reduction with reduced tillage under organic management, but long-term effects such as weed competition remain unknown.  相似文献   

4.
种植小麦的土壤中微生物生物量的动态变化   总被引:1,自引:0,他引:1  
A controlled release N fertilizer was developed by the carrier method using natural polysaccharides (PS) and urea. The results showed that mixing of PS and urea led to significant control of urea release. When a cross-linker (boric acid or glutaraldehyde) was added, a better control effect was observed. During a 30 min leaching time the nitrogen release rate from the controlled release fertilizer was nearly constant, which was significantly different from normal urea. One of the controlled release mechanisms was related to space resistance from a large molecular structure. Infrared (IR) analysis indicated that interaction of PS with urea was through a hydrogen bond or a covalent bond. These bonds created an a-helix or high molecular network fertilizer carrier system, which was another reason for a controlled nutrient release. Pot experiment showed that nitrogen use efficiency could increase significantly with a carrier fertilizer.  相似文献   

5.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

6.
Soil biochemical properties were measured annually between 1995 and 1999 in soil from an 8-ha site that had received over 1,000 wet tonnes ha–1 undigested sewage sludge, 1–4 years earlier. Basal respiration generally declined with time and was usually greatest in the untreated control area. This trend was attributed to a similar trend in soil moisture content. In contrast, microbial biomass C increased with time and also generally increased with sludge treatment age. Microbial biomass C, and to a lesser extent sulphatase activity, accurately predicted the order of sludge application to the site. This was perceived as a function of time since tillage and pasture establishment, with activities increasing in parallel to the build up of C residues in the soil, and not an effect of sludge or its composition. Except immediately after sludge application, there was no effect on N mineralisation and nitrification. None of the biochemical properties was strongly correlated with heavy metal concentrations. Our results suggest that there was little effect on soil biochemical properties, either adverse or beneficial, of adding raw sewage sludge to this site. Although a companion study showed considerable mobility and plant uptake of heavy metals, this difference could mainly be attributed to a different sampling strategy and the effects of intensive liming of the site.  相似文献   

7.
To improve soil fertility, efforts need to be made to increase soil organic matter content. Conventional farming practice generally leads to a reduction of soil organic matter. This study compared inorganic and organic fertilisers in a crop rotation system over two cultivation cycles: first crop broad bean (Vicia faba L.) and second crop mixed cropped melon-water melon (Cucumis melo-Citrullus vulgaris) under semi-arid conditions. Total organic carbon (TOC), Kjeldahl-N, available-P, microbial biomass C (Cmic), and N (Nmic), soil respiration and enzymatic activities (protease, urease, and alkaline phosphatase) were determined in soils between the fourth and sixth year of management comparison. The metabolic quotient (qCO2), the Cmic/Nmic ratio, and the Cmic/TOC ratio were also calculated. Organic management resulted in significant increases in TOC and Kjeldahl-N, available-P, soil respiration, microbial biomass, and enzymatic activities compared with those found under conventional management. Crop yield was greater from organic than conventional fertilizer. The qCO2 showed a progressive increase for both treatments during the study, although qCO2 was greater with conventional than organic fertilizer. In both treatments, an increase in the Cmic/Nmic ratio from first to second crop cycle was observed, indicating a change in the microbial populations. Biochemical properties were positively correlated (p < 0.01) with TOC and nutrient content. These results indicated that organic management positively affected soil organic matter content, thus improving soil quality and productivity.  相似文献   

8.
小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响   总被引:33,自引:4,他引:33  
通过室内模拟培养试验,揭示了不同水分条件下小麦和玉米秸秆在土壤中的腐解特点及对土壤碳、氮含量的影响。结果表明,1)水分条件对有机物质腐解的影响较大,在32 d的培养期间,相对含水量为60%(M60)时,土壤CO2释放速率始终低于含水量80%(M80)的处理。M60条件下释放的CO2-C量占秸秆腐解过程中释放碳总量的40.1%,而M80条件下达到51.5%;M60条件下,添加秸秆土壤中有机碳含量平均提高2.24 g/kg,显著高于M80条件下的1.43 g/kg。2)添加玉米秸秆的土壤,在培养期内CO2释放速率始终高于小麦秸秆处理,CO2-C累积释放量和有机碳净增量分别为408.35 mg/pot和2.12 g/kg;而小麦秸秆处理分别仅为378.94 mg/pot和1.56 g/kg,两种秸秆混合的处理介于二者之间。3)与未添加秸秆相比,土壤中添加小麦或玉米秸秆后,土壤有机碳、微生物量碳、全氮和微生物量氮含量均显著提高,且数量上总体趋势表现为:玉米秸秆两种秸秆混合小麦秸秆。可见,适宜水分条件有利于秸秆腐解过程中秸秆中碳向无机碳方向转化,而不利于向土壤有机碳方向转化;且玉米秸秆比小麦秸秆更易腐解。秸秆在土壤中腐解对补充土壤碳、氮作用很大,可改善土壤微生物生存条件,提高土壤质量。  相似文献   

9.
The effects of different types of organic fertilizers on the chemical and enzymatic properties of an Oxisol were studied after being fertilized for four consecutive years (26 crops) in a greenhouse under intensive cultivation of vegetables. Seven treatments, consisting of five types of organic fertilizer treatments, one "sequential application" (SA) treatment, and a chemical fertilizer treated plot were compared. The organic fertilizers used were dairy cattle dung compost (DCDC), hog dung compost (HDC), chicken dung compost (CDC), pea residue compost (PRC) and soybean meal (SBM). After 4 years of cultivation, the soils were analyzed for their chemical properties and enzymatic activities. The microbial carbon (C) and nitrogen (N), basal respiration and nitrification rate were also measured. The results showed that the SBM significantly lowered the soil pH, and that the HDC and DCDC raised the soil pH. The SBM and CDC resulted in the lowest soil electrical conductivity. The SBM had no significant effect on soil organic C and total N contents when compared with the CF plot. However, the DCDC resulted in the highest contents of soil organic C and total N. The organic fertilizers applied did not significantly affect the soil available copper, zinc, cadmium, lead and nickel. The effects of the different organic fertilizers on soil enzymatic activities depended on the types of organic fertilizers applied. The SBM and CDC often resulted in a lower microbial C (or N) and respiration rate, while in contrast DCDC and PRC resulted in high measurements. Most of the measured soil enzymatic activities in the SBM treatment, except for acid phosphatase, were the lowest. Differing contents of different heavy metals in the organic fertilizers resulted in different Mehlich III extractable heavy metal contents in the soils. From the point of view of the soil chemical and enzymatic properties, SBM is not an appropriate organic fertilizer for continuous application to an Oxisol.  相似文献   

10.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

11.
In the traditional shifting cultivation system practiced by the Karen people in northern Thailand, the effects of burning on the content of extractable organic matter, microbial biomass, and N mineralization process of the soils were studied. Five plots (5×5 m2 quadrat) with 0, 10, 20, 50, and 100 Mg ha-1 of slashed materials were arranged and burned. Ten to 20 Mg ha-1 of slashed biomass corresponded to the amount commonly burned by the Karen people. During the burning process, the soil temperature at the depth of 2.5 cm in the 100 Mg ha-1 plot almost evenly increased to 300°C while the temperature in the 10 to 50 Mg ha-1 plots increased with large variations from 50 to 300°C. Burning caused a conspicuous increase in the contents of organic C and (organic + mineral)-N extracted at room temperature and a simultaneous decrease in the contents of microbial biomass C and N, especially in the soil of the 100 Mg ha-1 plot. In the rainy season, the values of the changes induced by burning reverted to the values recorded before burning, except for the microbial biomass in the 100 Mg ha-1 plot, which still remained lower. Based on an incubation experiment, N mineralization rate was higher in the soils taken just after burning, especially in the 100 Mg ha-1 plot, than in the soils taken during the rainy season. However, the soil in the 100 Mg ha-1 plot was considered to have the lowest ability to supply mineral N among the soils in the rainy season. Burning of 10 to 20 Mg ha-1 biomass corresponding to the values recorded in Karen peoples' shifting cultivation system was more compatible with soil ecology in terms of N supply at the initial stage of crop growth and of microbial biomass recovery during the rainy season, compared to the burning of 100 Mg ha-1 biomass corresponding to the value recorded in a natural forest. Thus, the shifting cultivation system implemented by the Karen people can be considered to be a well-balanced agricultural system.  相似文献   

12.
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon (C), nitrogen (N), and phosphorus (P) metabolisms in response to agricultural nutrient management. To determine the roles of fertilization and residue return with respect to ecological stoichiometry, we collected soil samples from a 30-year field experiment on residue return (maize straw) at rates of 0, 2.5, and 5.0 Mg ha-1 in combination with 8 fertilization treatments:no fertilizer (F0), N fertilizer, P fertilizer, potassium (K) fertilizer, N and P (NP) fertilizers, N and K (NK) fertilizers, P and K (PK) fertilizers, and N, P, and K (NPK) fertilizers. We measured soil organic C (SOC), total N and P, microbial biomass C, N, and P, water-soluble organic C and N, KMnO4-oxidizable C (KMnO4-C), and carbon management index (CMI). Compared with the control (F0 treatment without residue return), fertilization and residue return significantly increased the KMnO4-C content and CMI. Furthermore, compared with the control, residue return significantly increased the SOC content. Moreover, the NPK treatment with residue return at 5.0 Mg ha-1 significantly enhanced the C:N, C:P, and N:P ratios in the soil, whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass. Therefore, NPK fertilizer application combined with residue return at 5.0 Mg ha-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms. Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.  相似文献   

13.
Information is needed on the ability of different crop management factors to maintain or increase soil C and N pools, especially in intensively tilled short crop rotations. Soil samples from field experiments in Maine were used to assess the effect of cover crop, green manure (GM) crop, and intermittent or annual amendment on soil C and N pools. These field experiments, of 6–13 years duration, were all characterized by a 2-year rotation with either sweet corn ( Zea mays L.) or potato ( Solanum tuberosum L.), and primary tillage each year. Total, particulate organic matter (POM), and soil microbial biomass (SMB)-C and -N pools were assessed for each experiment. Total C and N stocks were not affected by red clover ( Trifolium pratense L.) cover crop or legume GM, but were increased by 25–53% via a single application of papermill sludge or an annual manure and/or compost amendment. With the exception of continuous potato production which dramatically reduced the SMB-C and SMB-N concentration, SMB-C and -N were minimally affected by changes in cropping sequence, but were quite sensitive to amendments, even those that were primarily C. POM-C and -N, associated with the coarse mineral fraction (53–2,000 µm), were more responsive to management factors compared to total C and N in soil. The change in soil C fractions was a linear function of increasing C supply, across all experiments and treatments. Within these intensively tilled, 2-year crop rotations, substantial C and N inputs from amendments are needed to significantly alter soil C and N pools, although cropping sequence changes can influence more labile pools responsible for nutrient cycling.  相似文献   

14.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

15.
中国农业废弃物种类多、数量大、利用率低、污染重。将有机物料还田,是实现废弃物资源化利用的重要途径。该研究以循环农业理念为指导,选择代表农田内循环的秸秆以及代表农沼循环、农牧循环、农菌循环、农工循环的废弃物沼渣、猪粪、菌渣和酒渣为试验材料,开展了等碳量还田定位试验,分析各有机物料还田后对土壤有机碳及其组分的影响。结果表明:1)连续施用有机物料提高了土壤总有机碳(TOC)、易氧化有机碳(LOC)、微生物量碳(MBC)和可溶性有机碳(DOC)含量。随着有机物料还田年限的增加,土壤TOC、LOC和MBC含量均不同程度地增加,年平均增幅分别为:15.57%~22.82%、20.00%~38.31%和16.30%~50.56%。还田5年后各有机物料处理土壤TOC、LOC、MBC和DOC含量平均分别是无机肥处理的1.24~1.62、2.07~3.19、1.20~2.06和1.05~3.36倍。2)不同有机物料中均利于土壤TOC含量的提高,秸秆提升效果相对最差,沼渣、菌渣、猪粪、酒渣和秸秆还田处理的0~20cm土壤TOC含量平均增长速率分别为:22.82%、21.88%、16.42%、16.13%和15.57%。  相似文献   

16.
不同栽培方式对菜地土壤养分和生物学特性的影响   总被引:1,自引:0,他引:1  
通过田间小区试验,以芹菜、西兰花、生菜和胡萝卜为供试作物,分析比较了有机栽培、安全环境质量栽培、特别栽培和常规栽培对土壤养分和生物学特性的影响.结果表明,有机栽培、安全环境质量栽培和特别栽培下土壤有机质、全氮、碱解氮、速效磷和速效钾含量比常规栽培均不同程度地增加.有机栽培、安全环境质量栽培和特别栽培均显著提高了土壤微生物量碳含量,比常规栽培分别提高48.6%、42.9%和26.6%,并达到显著(P<0.05)或极显著(P<0.01)差异.土壤过氧化氢酶和脲酶活性在有机栽培、安全环境质量栽培和特别栽培下比常规栽培显著提高17.4% ~38.8%,且过氧化氢酶活性达到显著(P<0.05)或极显著(P<0.01)差异.有机栽培、安全环境质量栽培下土壤转化酶活性比常规栽培有所提高,但是没有达到显著差异.不同栽培方式对土壤养分和生物学特性影响作用的大小为有机栽培>安全环境质量栽培>特别栽培>常规栽培.  相似文献   

17.
不同有机肥源对土壤微生物生物量及花生产量的影响   总被引:15,自引:1,他引:14  
通过盆栽试验,采用平板计数法和DGGE分析法,研究施用化肥与不同来源的有机肥对土壤微生物生物量及花生产量的影响.结果表明,施肥均显著提高了花生的经济产量与生物产量,其中以施用麸酸有机复混肥处理最高;土壤中细菌、真菌、放线菌总量以施用鸡粪处理最高,其他处理差别不大;土壤微生物总DNA提取、PCR扩增及其产物DGGE分析表明,施用各品种有机肥较不施肥与施用化肥促进了土壤某些微生物量的提高,而施用不同有机肥品种促使不同种类微生物量的提高.故不同有机肥源对土壤微生物生物量乃至其多样性特征均产生影响.  相似文献   

18.
以宁夏新垦的淡灰钙土为对象,研究了蚕豆/玉米间作系统不同施氮水平下土壤活性有机碳、氮的时空变异特征。结果表明:新垦淡灰钙土土壤微生物量碳、氮(SMBC、SMBN)及可溶性有机碳、氮(SOC、SON)等活性有机碳、氮含量较低;随着施氮量的增加土壤SMBC含量显著增加;玉米收获期土壤SMBC、SMBN含量显著高于蚕豆收获期;土壤SMBC、SMBN含量空间变异为:蚕豆行间(F-F)含量最高,玉米行(M)、玉米行间(M-M)最低。与不施氮相比,施氮显著提高了蚕豆收获期土壤SOC、SON含量,而玉米收获期各施氮水平间土壤SOC和SON含量无明显差异;土壤SOC、SON的空间变异为:玉米行间>蚕豆行间、蚕豆行(F)、蚕豆与玉米行间(F-M)>玉米行。玉米收获期土壤SMBC及SMBN含量的显著增加,说明土壤微生物对矿质氮的固持对于新垦土壤肥力的提高具有重要作用。  相似文献   

19.
不同有机物料还田对华北农田土壤固碳的影响及原因分析   总被引:2,自引:3,他引:2  
中国农业面临着废弃物数量大、污染严重,农田土壤生产力低的现实问题。该研究以增加农田土壤固碳为目标对砂质农田进行有机物料还田,将秸秆、猪粪、沼渣和生物炭4种物料用尿素调节等氮还田,对农田土壤有机碳、颗粒有机碳、可溶性有机碳和微生物量碳的含量进行测定,并探究不同有机物料还田对土壤有机碳的影响原因。研究结果表明:物料还田3a后,生物炭、猪粪和沼渣处理土壤有机碳(SOC)比秸秆处理分别高262.4%、26.8%和20.7%;2014—2015年生物炭处理的土壤微生物量碳(MBC)较秸秆处理降低2.9%~35.5%,猪粪处理和沼渣处理的土壤可溶性有机碳(DOC)分别提高17.1%~60.1%和7.2%~64.8%;2014—2015年生物炭、猪粪和沼渣处理土壤颗粒有机碳(POC)较秸秆处理提高10.8%~148.2%、9.5%~58.3%和11.3%~57.6%;物料还田后,土壤总有机碳(TOC)和POC呈极显著的回归关系(R2=0.67,P0.001),土壤DOC与MBC有极显著相关性(R2=0.52,P0.001)。与秸秆还田相比,生物炭还田有利于土壤POC的累积进而促进土壤有机碳的提升,猪粪和沼渣则通过提高土壤MBC、DOC和POC的含量,促进土壤有机碳的周转和固定。从农田土壤固碳角度而言,生物炭,猪粪和沼渣还田优于秸秆还田。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号