首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了促进生物炭研究和农用,采用盆栽试验研究了两种生物炭基氮肥及相应生物炭对土壤部分化学性质、养分状况及作物产量的影响。试验结果表明:施用生物炭基氮肥可显著提高土壤有机碳含量,提高土壤pH值、阳离子交换量、土壤速效磷、速效钾和矿质态氮含量,增强土壤保肥能力,促进作物增产。生物炭对土壤化学性质和养分状况虽有一定改善作用,但作物增产效应不明显甚至减产。因此,将生物炭与肥料复合制成生物炭基肥料不但可以保持生物炭改良土壤的功能,还可促进作物生长和增产,有利于生物炭农用效益的提升。  相似文献   

2.
New organic fertilizers based on waste products are continually being introduced in agriculture. Their nitrogen (N) fertilizer value of their total N and mineral N content varies widely, creating a demand for standardized laboratory methods. This study evaluated some potential methods for estimating the N fertilizer value of different kinds of organic fertilizers. The methods were evaluated against the N fertilizer value obtained from a ryegrass pot experiment. Fifteen fertilizers were tested, including different kinds of manure, powders from meat, bone, blood and feathers, rapeseed cake, lucerne pellets, sewage sludge, biogas residue, vinasse and mussel compost. Mineral fertilizer equivalents (MFE) were calculated as the fraction of total N (MFE) or organic N (MFEorg) out of total N that has the same availability to plants as inorganic N. Mineral N content (% of total N added with organic residue) after 4 weeks of incubation of soil was correlated to MFE (r2 = 0.78), but was on average 17% lower. Warm water‐extractable N, amino acid N and crude fibre analysis all proved to be unsatisfactory as methods for estimating MFE or MFEorg. However, the carbon/nitrogen ratio accurately reflected short‐term plant‐available N through a negative linear relationship (r2 = 0.83) and would thus be a very useful method for estimating MFE, with MFE decreasing by 5% per unit increase in C/N ratio. The results also indicated that the analysis of near infrared reflectance (NIR) spectra can be an even quicker and cheaper method to estimate MFE of organic residues, but this issue requires further research.  相似文献   

3.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

4.
Abstract

Soil quality and crop productivity can be improved by the combined soil application of organic amendments and synthetic fertilizers. We evaluated the sole and combined effects of sugarcane-bagasse biochar (SBB), farmyard manure (FYM) and nitrogen (N) fertilizer on soil properties and corn yield traits. Three N fertilizer rates (0, 50 and 100% of recommended) were used with or without the organic amendments. We observed significant increases in soil nitrate-N (at vegetative and reproductive phases), ammonical-N and microbial-biomass-N contents in responses to a co-application of 0.5% SBB, 0.5% FYM and 100% N fertilizer (p?≤?0.05). While the same co-application also resulted in the most significant soil organic carbon value, the maximum soil microbial biomass carbon was observed when 0.5% SBB and 0.5% FYM combination was applied along with 50% N fertilizer (p?≤?0.05). Plant growth indices—shoot length and, fresh and dry weights of shoot and root were also recorded to be the highest where the same organic amendments were applied in addition to a 50% or 100% mineral N fertilizer (p?≤?0.05). Combined application of the organic amendments effectively improved soil CEC compared to those in responses to individual applications of SBB and FYM (p?≤?0.05). Conclusively, for increasing the corn yield and improving the soil quality, the co-application of 0.5% SBB and 0.5% FYM was more effective than any of the individual 1% applications; Additions of 50% and 100% mineral N to the organic combination were equally useful for increasing the grain yield.  相似文献   

5.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

6.
Long-term effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of a maize–wheat system were investigated in the ongoing long-term fertilizer experiment, during rabi (2007–2008) and kharif (2008) seasons at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University–Hill Agricultural Research and Extension Centre, Dhaulakuan. After 16 cropping cycles, bulk density decreased in plots where farmyard manure (FYM) was applied, whereas pH decreased in all the treatments. The organic carbon content of the soil increased in all the treatments except 100% nitrogen (N). Cation exchange capacity (CEC) increased in all the treatments over the initial status of the soil. Available N showed buildup over the initial status in most of the treatments. Available phosphorus (P) declined from initial status in treatments where only N was applied alone or with FYM. There was reduction in available potassium (K) status in all the treatments except 100% NPK. Continuous addition of FYM with balanced application of inorganic fertilizers improved content of exchangeable calcium (Ca) and magnesium (Mg) over initial status compared to imbalanced application of fertilizers. Continuous use of imbalanced inorganic fertilizers resulted in lesser crop yields and nutrient uptake compared to that with the application of balanced dose of inorganic fertilizers with FYM.  相似文献   

7.
通过模拟试验及田间试验研究不同磷肥施用后对土壤磷有效性的动态变化和分布特点,以及玉米磷吸收和产量响应的影响。田间和模拟试验包括4个处理,分别为对照(不施磷肥)、MAP(磷酸一铵)、UP(磷酸脲)和AAP(水溶性聚磷酸铵)。模拟试验中,不同磷肥均提高土壤中有效磷含量,APP处理10—15 cm土层有效磷含量增加最多。在均匀的养分投入和管理水平下,3种磷肥品种均有土壤酸化效果,其中UP处理最为显著。田间试验中,玉米生长后期,APP处理的土壤有效磷含量在深层土壤分布较高,UP处理土壤pH较低,均有利于改善土壤的供磷能力,提高土壤有效磷含量;APP处理对根系发育有显著的促进作用,玉米组织磷含量和磷吸收量最大,产量最高(14.40 t/hm^2)。3种磷肥中,APP处理移动性较好,土壤深层有效磷含量增加,利于根系生长和养分的吸收,提高产量。水溶性聚磷酸铵(APP)是一种适合于玉米灌溉施肥的肥料。  相似文献   

8.
Knowledge on short‐term and long‐term availability of nitrogen (N) after application of organic fertilizers (e.g., farmyard manure, slurry, sewage sludge, composts) provides an important basis to optimize fertilizer use with benefits for the farmer and the environment. Nitrogen from many organic fertilizers often shows little effect on crop growth in the year of application, because of the slow‐release characteristics of organically bound N. Furthermore, N immobilization after application can occur, leading to an enrichment of the soil N pool. However, this process finally increases the long‐term efficiency of organic fertilizers. Short‐term N release from organic fertilizers, measured as mineral‐fertilizer equivalents (MFE), varies greatly from 0% (some composts) to nearly 100% (urine). The most important indicators to be used for predicting the short‐term availability of N are total and NH ‐N contents, C : N ratio (especially of the decomposable organic fraction), and stability of the organic substances. Processing steps before organic fertilizers are applied in the field particularly can influence N availability. Composting reduces mineral‐N content and increases the stability of the organic matter, whereas anaerobic fermentation increases NH ‐N content as well as the stability of organic matter, but decreases the C : N ratio remarkably, resulting in a product with a high content of directly available N. Nevertheless, long‐term effects of organic fertilizers rather slowly releasing N have to be considered to enable optimization of fertilizer use. After long‐term application of organic fertilizers, the overall N‐use efficiency is adequate to a MFE in the range of 40%–70%.  相似文献   

9.
有机肥替代20%化肥提高黑钙土养分有效性及玉米产量   总被引:6,自引:3,他引:3  
  【目的】  化肥减量并配施有机肥是减少肥料损失、提高化肥利用率的有效途径。研究在秸秆条带还田下化肥减量配施不同有机肥对东北地区黑钙土速效养分和玉米产量的影响,以实现玉米高效和可持续生产。  【方法】  于2018和2019年,连续两年在农安试验基地黑钙土上进行玉米田间试验。本试验在秸秆条状还田下,共设置4个处理,即当地常量施肥 (T1)、化肥减量20% (T2)、化肥减量20%配施鸡粪2988 kg/hm2 (T3) 和化肥减量20%配施牛粪5098 kg/hm2 (T4),T1、T3和T4处理的总氮投入量相同。在玉米拔节期和收获期,分别测定土壤pH、有机碳和速效氮磷钾含量,在收获期测产。  【结果】  与T1处理相比,T2处理连续两年玉米产量均未显著降低,土壤有机碳和速效氮磷钾含量与常量施肥处理大体接近;T3和T4处理显著增加了土壤有机碳和速效养分含量。其中,T3处理2018年土壤有机碳、碱解氮、速效磷、速效钾含量分别较T1增加了15.20%、12.20%、16.70%、7.75%,2019年分别增加了13.0%、18.5%、34.2%、18.5%。玉米产量连续两年均以T4处理效果最优,2018和2019年分别较T1增产5.6%和20.8%,T3处理的增产幅度分别为3.75%和15.40%。  【结论】  在秸秆条状还田下,化肥减量配施有机肥可以增加土壤中有机碳和速效氮、磷、钾含量,可实现玉米增产增收。在黑钙土上配施鸡粪的效果优于牛粪。  相似文献   

10.
The aim of this study was to contribute to the development of pelleted compound recycling fertilizers with favourable handling and spreading characteristics and balanced nutrient ratios by combining nitrogen (N)‐ and phosphorus (P)‐rich waste resources (meat bone meal, fish sludge or food waste) with potassium (K)‐rich bottom wood ash. Pelleted compound recycling fertilizers with good durability and low dusting tendency were produced by roll‐pelleting preheated waste resources at a suitable moisture content. However, the nutrient ratios in the final products were insufficiently balanced, with too low N concentrations relative to P and K to meet crop demands. In a bioassay using barley (Hordeum vulgare ) and a nutrient‐deficient sand/peat mixture, the relative agronomic effectiveness (RAE ) of pelleted compound recycling fertilizers and reference recycling fertilizers was 22–42% of that of mineral compound fertilizer. Growth limitation was due to reduced N availability (mineral fertilizer equivalent ‐ MFE = 35–57%) or reduced P availability (MFE  = 20–115%), with the greatest P fertilizer value obtained for digestate based on dairy manure and fish sludge. Availability of K in bottom wood ash was masked by the experimental soil.  相似文献   

11.
The study was conducted in the international mineral and organic nitrogen fertilization trial (IOSDV) located in Keszthely in the western part of Hungary. The soil class of the study site was Ramann-type brown forest soil (Eutric Cambisol). The factors of the experiment are the increasing rate of mineral N fertilization and the complementary application of different forms of organic fertilizers in a three-course crop rotation (maize, winter wheat and winter barley) set up in 1983. The organic carbon content of the soil (Corg%) definitely increased after application of organic manure (OM), similarly to the average yield of the cultivated crops. After application of OM the increase in Corg content was 0.20%, and after straw + complementary N application it was 0.12%, compared with plots without organic manures. Mineral N fertilizer did not significantly influence the Corg content in soil over this period. Depending on the type of crop, the specific year and the N content of the soil, the combined application of mineral fertilizers and organic manures resulted in a 12–17% increase in crop yield, in general, whereas at maximum yields the increase accounted for 5–10%.  相似文献   

12.
On the basis of long‐term fertilization experiments in Skierniewice, being conducted since 1923 at the Experimental Field of Warsaw Agricultural University, the fate (or balance) of nitrogen for a period of 35 years and that of phosphorus and potassium for 20 years, was studied. The balance includes N, P and K rates applied in mineral fertilizers and farmyard manure (FYM), uptake of these nutrients by the crop plants and the changes in the content of total N and total P and of slow release K in the soil during that time. The nitrogen balance shows a loss of this nutrient of 11—14 kg N ha—1 y—1, which corresponds to 15% of the applied ammonium nitrate on fields without FYM but to 23% on fields with FYM, in spite of crop yields being considerably greater on fields treated with FYM. The phosphorus balance indicated that in the 0—70 cm soil layer less than 4% of P from superphosphate was not found. In the treatment not fertilized with potassium for many years, the plants took up 49 kg K ha—1 y—1 from slow release forms because the fraction of available K did not change during that period. When calculating the potassium balance only 1.6% of K from potash salt were not found in plots without FYM but 12.3% of the applied KCl were not recovered in treatments with FYM. The comparison of the P‐ and K‐uptake from organic and mineral fertilizer in the two crop rotations indicates a higher P‐ and K‐efficiency from FYM than from inorganic fertilizer.  相似文献   

13.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

14.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

15.
粘土包膜缓释尿素的养分释放特征及其增产效应   总被引:2,自引:0,他引:2  
以尿素为缓释肥料核心,两种粘土矿物为包膜材料,聚乙烯醇为粘结剂,研制出两种包膜缓释肥料,并探讨了两种包膜肥料在土壤、石英砂等介质条件下的氮素释放特征及形态转化规律,还通过盆栽试验进一步研究了包膜尿素的增产效应。试验结果表明,与普通尿素相比,两种粘土矿物肥料均具有较好的缓释性能,在以石英砂为介质时表现的尤为明显;包膜后的尿素具有较明显的生物增产效应,两种包膜肥料在株高、鲜重、干重等主要产量性状方面与普通尿素均存在显著差异。  相似文献   

16.
Resource use efficiency requires a correct appreciation of the nitrogen (N) fertilizer replacement value (NFRV, percentage of total N applied) of manures. We assessed the NFRVs of the liquid fraction originating from separated pig slurry (MC), untreated pig slurry (PS), untreated cattle slurry (CS), the solid fraction from separated pig slurry (SF) and solid farmyard manure from cattle (FYM) in two consecutive years in silage maize grown on a sandy soil. Maize yields responded positively to each of these N sources applied at rates up to 150 kg of mineral fertilizer equivalents per ha per year (i.e. NFRV × total N rate). The observed NFRVs, relative to calcium ammonium nitrate fertilizer, amounted to 78% for MC, 82% for PS, 79% for CS, 56% for SF and 34% for FYM when averaged over both years. NFRVs were positively related to the ammonium‐N share in the total N content. Rye cover crop establishment after the harvest of maize reduced nitrate concentrations of the upper groundwater by, on average, 7.5 mg nitrate‐N/L in the first year and 10.9 mg/L in the second year, relative to a bare soil. Regardless of the presence of a cover crop, nitrate concentrations responded positively to the applied rate of effective N (total N × NFRV) but less to postharvest residual soil mineral N.  相似文献   

17.
本文研究了长期(1989—2009年)不同施肥方式对砷在黄淮海地区典型壤质潮土及作物中累积的影响。田间试验设置7个处理:有机肥(OM)、OM+无机化肥氮磷钾(NPK)、NPK、NP、PK、NK和不施肥(CK),OM+NPK处理为有机肥和无机化肥氮磷钾各施一半。结果显示,长期不同施肥方式下砷在表层(0~20 cm)及亚表层(20~40 cm)土壤中的含量均有明显累积,但含量较低(<25 mg.kg 1),对农田生态环境安全的影响较小。土壤中砷的累积主要与灌溉及沉降有关,受施肥方式的影响相对较小。磷肥中砷的含量明显高于氮肥、钾肥及有机肥,磷肥的长期施用促进了砷在PK处理土壤中的累积,但在作物产量较高的情况下,对其在土壤中累积趋势的影响较小,而有机肥的添加则会减缓这种累积趋势。砷在小麦和玉米两种典型作物组织中的含量分布表现为:根系>茎叶>籽粒,其中籽粒中砷的含量显著低于根系及国家食品安全相关标准。经过长期不同方式的施肥处理,砷在小麦组织中的含量表现为:PK>OM>OM+NPK>NPK>NP>NK>CK,与土壤中有效磷含量的变化基本一致,并间接受到土壤有机质的影响。在OM、OM+NPK、NPK和NP施肥处理下,土壤有机质含量及作物产量均较高,土壤有机质含量的提高促进了砷在小麦体内的富集,但对其在玉米根系中含量的影响不明显;玉米生长期较短且产量较高,对砷的需求量较大,土壤中有效态砷含量的不足抑制了其在玉米根系中的分布,但玉米通过加强组织对砷的转移能力提高了其在茎叶中的含量。  相似文献   

18.
Widespread yield stagnation and productivity declines in the rice–rice cropping system have been reported and many of the associated issues are related to soil quality. A long‐term experimental study was initiated in 1969 to assess the impact of continuous cultivation of rice as a single crop grown in wet as well as dry seasons using varying levels of chemical fertilizer and manure applications on soil quality indicators (physical, chemical and biological), a sustainable yield index (SYI) and a soil quality index (SQI). The treatments comprised chemical fertilizers and farmyard manure (FYM) either alone or in combination viz. control, N, NP, NK, NPK, FYM, N+FYM, NP+FYM, NK+FYM and NPK+FYM, laid out in a randomized complete block design with three replications. Soil samples were collected after the wet season rice harvest in 2010 and were analysed for physical, chemical and biological indicators of soil quality. A SYI based on long‐term yield data and SQI using principal component analysis (PCA) and nonlinear scoring functions were calculated. Application of NPK fertilizers in combination with FYM significantly increased the average grain yield of rice in both wet and dry seasons and enhanced the sustainability of the system compared to the control and plots in receipt of fertilizers. The SYI for the control was higher in the wet season than in the dry one, whereas the reverse was true for NPK+FYM treatment. The value of the dimensionless SQI varied from 1.46 in the control plot to 3.78 in the NPK+FYM one. A greater SYI and SQI in the NPK+FYM treatment demonstrated the importance of using a chemical fertilizer in combination with FYM. For the six soil quality indicators selected as a minimum data set (MDS), the contribution of DTPA‐Zn, available‐N and soil organic carbon to the SQI was substantial ranging from 59.4 to 85.7 per cent in NPK+FYM and control plots, respectively. Thus, these soil parameters could be used to monitor soil quality in a subhumid tropical rice–rice system.  相似文献   

19.
To explore long-term impact of organic and inorganic fertilizers on soil health and grain quality, we monitored the enzyme activities and chemical properties of soil; and chemical composition of grain from eight treatments at an experimental field site established in 1996. There were eight treatments applied to both wheat and maize seasons: a control; four inorganic fertilizers, that is, nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorous and potassium (PK) and nitrogen, phosphorus and potassium (NPK); farm yard manure alone (FYM) and addition of FYM at two different doses (100 and 50% of recommendation) to NPK that is, NPK + FYM and ½ NPK + FYM. After 11 years of the experiment the NPK + FYM and ½ NPK + FYM treatments had the highest yields, about 5 Mg maize ha−1 and 2 Mg wheat ha−1 with about 2 and 0.5 Mg ha−1, respectively more than the NPK treatments. The dehydrogeanse activity of soils increased significantly in FYM and ½ NPK + FYM. Except urease all other enzymatic activities were increased in those treatments, which received manure. Urease activity was higher in mineral-N applied plots. Grain protein content of both maize and wheat was highest in mineral fertilized plots. Test weight also increased significantly on application of mineral fertilizer. Plots treated with half dose of recommended mineral fertilizer along with FYM were higher in urease, phosphomono and diesterase activities than that of NPK + FYM treated plots. Long-term application of inorganic nutrients along with FYM improved grain mineral composition and yield. Inhibition of few enzymatic activities were also observed upon application of inorganic nutrients either alone or in combination.  相似文献   

20.
以多种天然、半天然和合成高分子有机物以及无机矿物质作为复合载体材料,研究开发出一种胶粘控释肥料。为了研究复合载体材料对土壤环境的效应,采用土壤盆栽和实验室培养的方法研究载体材料对玉米生长、生理生化活性和土壤酶活性的影响。结果表明,载体材料处理的玉米生长和生理生化活性与对照处理相比略有促进作用,但差异不显著;对土壤转化酶、脲酶具有明显的激发效应,正常用量下对过氧化氢酶、磷酸酶没有明显的不利影响,但过高用量会出现抑制作用。胶粘控释肥料与常规肥料相比,可促进玉米生长、提高产量和养分利用率,生物量干重提高8.9%,氮钾养分利用率分别提高11.1%和5.1%,均达显著水平。载体材料的施用对环境不会产生不利影响,而且胶粘控释肥料表现出明显的提高养分利用率和增产效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号