首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对传统的农作物估产方法过度依赖人工经验,以及实地采样成本高等问题。该研究使用MODIS数据构建了基于卷积神经网络(convolutional neural network,CNN)的冬小麦估产模型。对2006-2016年中国北方冬小麦核心区的60个地级市进行模型训练,鲁棒性检验以及估产误差空间特征分析。结果表明:1)估产模型在训练集和验证集的均方根误差(root mean squareerror,RMSE)分别为183.82kg/hm2、689.72 kg/hm2,决定系数(R2)分别为0.98、0.71。2)以同样的神经网络结构对2006-2016年估产样本分别作为验证集,训练11个独立模型的RMSE平均值是772.03 kg/hm2,证明算法具有较高的鲁棒性。3)2007、2012和2016年不同省份的估产结果表明,模型对北方冬小麦区的平原区估产精度较高,尤其是河北和山东2省(RMSE为500 kg/hm2)。该文构建的估产模型可以实现冬小麦单产的复杂拟合,可以应用于较大尺度(范围)冬小麦产量预报。  相似文献   

2.
基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产   总被引:3,自引:4,他引:3  
发展和构建高精度的作物遥感估产模型,对于国家制订粮食进出口政策和保障粮食安全具有重要意义.尝试利用支持向量回归方法(SVR)构建遥感估产模型,首先利用北京郊区2004年和2007年冬小麦主要生育期多时相Landsat TM影像生成的归一化植被指数,通过SVR构建遥感估产模型进行产量估算.然后针对模型的稳健型和预报能力进行交叉验证,并与常规的多元回归方法进行对比.结果表明,利用SVR方法构建的遥感估算模型有效地提高了估算精度,与多元回归方法相比,2004年和2007年决定系数分别提高0.2162、0.2158,均方根误差分别降低0.1682、0.2912.因此基于SVR和多时相遥感数据构建估产模型用于冬小麦估产是可行、有效的,为应用多时相遥感数据进行冬小麦估产提供了一种方法.  相似文献   

3.
基于信息扩散和关键期遥感数据的冬小麦估产模型   总被引:2,自引:3,他引:2  
农作物估产对于国家制定粮食进出口政策和保障粮食安全具有重要意义。为构建高精度的作物估产模型,探讨了一种将信息扩散原理和关键期遥感数据相结合的农作物遥感估产方法。首先利用信息扩散原理将关键期遥感数据生成的NDVI和实割实测产量数据扩散到多维监控空间,采用模糊合成的方法建立关键期遥感数据和实割实测产量之间的离散关系模型。然后针对模型的稳定性和精度进行交叉验证,并与多元线性回归模型和BP神经网络模型进行对比。结果表明,利用信息扩散方法构建的遥感估产模型稳定性和精度都明显提高,与多元回归方法和BP神经网络方法相比,决定系数分别提高0.180、0.491,均方根误差分别降低173.10、487.79 kg/hm2。该方法能较好地模拟冬小麦遥感估产中归一化植被指数和产量之间的非线性关系,且泛化推广能力优异,为应用关键期遥感数据进行冬小麦估产提供了一种有效方法。  相似文献   

4.
基于3S和实测相结合的冬小麦估产研究   总被引:7,自引:1,他引:7  
该文运用3S集成技术(地理信息系统、遥感和全球定位系统),进行冬小麦产量估测的应用研究。结果表明, 3月下旬是运城地区冬小麦面积监测的最佳时相,4月上、中旬是该区冬小麦产量估算的最佳时期。用遥感信息中的TM提取冬小麦面积,AVHRR提取绿度信息,效果较好。根据归一化植被指数的大小把冬小麦分为3类,同类麦田在不同区域的实测产量差异很大。分析研究区域自然地理特征和关键期气象资料,以归一化植被指数、极高温度、相对湿度为主因子建立了冬小麦遥感—气象—产量综合模型。  相似文献   

5.
冬小麦是中国重要的粮食作物,开展县级冬小麦产量预测对粮食宏观调控和农业精准化发展具有重要指导意义。该研究从县级产量预测角度出发,结合卷积神经网络(Convolutional Neural Networks,CNN)和反向传播神经网络(Back Propagation Neural Networks,BP)技术提出了冬小麦县级产量预测方法,使用CNN卷积神经网络对Sentinel-2遥感数据进行冬小麦种植区的分析和提取,将得到的种植区分布数据与MODIS EVI数据和耕地分布数据进行了融合,利用BP神经网络对融合后的数据进行产量特征提取和预测并选取均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(Mean Absolute Error,MAE)和样本决定系数(Coefficient of Determination,R2)作为精度指标对试验结果进行分析和评价。结果表明,基于CNN卷积神经网络和BP神经网络的冬小麦县级产量预测方法在山东省2014-2016年冬小麦县级产量验证集中R2达到0.87以上,MAE低于269.48 kg/hm2,RMSE低于346.56 kg/hm2,93%的县单产相对误差小于9%,试验结果平均值与中位数的偏差小于1.2%;在河南省2015-2019年冬小麦县级产量验证集中R2达到0.96以上,MAE低于304.84 kg/hm2,RMSE低于418.14 kg/hm2,91%的县单产相对误差小于9%,试验结果平均值与中位数的偏差小于1.6%,方法所构建模型具有良好的预测准确率、鲁棒性和泛化性,可以实现县级尺度下的冬小麦产量预测。  相似文献   

6.
基于无人机遥感植被指数优选的田块尺度冬小麦估产   总被引:1,自引:3,他引:1  
田块尺度作物快捷精准估产对规模化农业经营管理具有重要意义。因此,急需选取最优植被指数和最佳无人机遥感作业时期,建立冬小麦无人机遥感估产模型,获取及时、快速、低成本的无人机遥感估产方法。该文以山东省滨州市典型规模化农田为研究对象,利用固定翼无人机遥感平台对冬小麦进行多期遥感观测与估产。基于2016年冬小麦返青拔节期、抽穗灌浆期和成熟期的无人机遥感影像数据集,采用最小二乘法,构建了基于不同植被指数与冬小麦实测产量的9种线性模型,并结合作物实测产量进行模型评价。多时相多种类植被指数的优选分析结果显示,抽穗灌浆期估产模型R~2最高,RMSE最低(n=34)。其中,模型R~2达到0.70的植被指数共6个,从高到低依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI;RMSE由低到高依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI。另外,该文进一步评价农田土壤像元对无人机遥感估产的影响,经过阈值滤波法处理后,返青拔节期估产模型的R~2(n=34)从约0.20提升至0.30以上,RMSE和MRE下降;抽穗灌浆期模型的RMSE降低,R~2(n=34)有所提升但不显著。综上所述,最佳无人机飞行作业时期为冬小麦抽穗灌浆期,最优植被指数为EVI2,土壤像元的滤除对抽穗灌浆期无人机遥感估产模型的影响不显著。因此,优化后的基于植被指数的无人机遥感估产模型,可以快速有效诊断和评估作物长势和产量,为规模化农业种植经营提供一种快捷高效的低空管理工具。  相似文献   

7.
冬小麦病害与产量损失的多时相遥感监测   总被引:6,自引:8,他引:6  
为了开展农作物病害遥感监测与产量损失评估,该文以北京郊区大田生产条件下的冬小麦条锈病、白粉病的为研究对象,获取了2007年4月10日、4月26日、5月12日、5月28日共四期Landsat TM卫星影像,准同步地测量了试验地块的冠层光谱数据及配套农学数据。利用该4个时相的遥感数据,分析了试验区的冬小麦条锈病、白粉病在主要生育期的光谱特征及其变化,与对照地块相比,病害小麦在可见光和短波红外波段的光谱反射率降增大,近红外波段反射率减小,红边则会向短波方向移动,红边振幅减小,NDVI值减小。并利用冬小麦病害发生前期(4月10日,4月26日)的卫星遥感数据建立了作物产量的早期预测模型,结合实测的产量数据,定量计算了条锈病和白粉病的产量损失,结果表明两个白粉病和条锈病小麦地块的减产幅度超过了30%。  相似文献   

8.
基于权重最优组合和多时相遥感的作物估产   总被引:2,自引:2,他引:2  
多时相遥感数据比单一时相携带了更多的反映作物产量的信息,研究如何将多时相遥感信息进行有机融合以提高作物估产精度的方法是具有意义的。权重最优组合(WOC)是一种通过对单个模型权重的最优化,来构建高精度组合模型的原理方法。论文以黑龙江农垦友谊农场大麦产量遥感估算为例,首先利用大麦4个时相的Landsat5 TM影像分别构建单一时相的大麦产量模型,然后利用WOC的迭代算法,通过赋予4个单一时相产量模型以最优权重,生成基于多时相遥感的组合模型估算大麦产量,结果表明:基于WOC和多时相遥感的组合估产模型的决定系数R2与单一时相的相比得到较大改善,估算精度提高明显。同时,通过对WOC获取的各时相单一模型最优权重大小进行分析表明:应用多时相遥感数据进行作物估产时,权重大小能够反映各时相遥感数据所携带的产量信息的多少,这对于如何选择和确定能有效反映作物产量的敏感遥感时相具有一定的指导意义。  相似文献   

9.
《土壤通报》2015,(1):169-176
快速准确的粮食作物产量估算对于国家制订粮食政策和农业可持续发展具有重要意义。利用地面高光谱遥感的优点,获取作物冠层的精细光谱,并根据植被绿峰、红边、水汽吸收波段、近红外反射峰及短波红外反射峰等特征构建高光谱指数,从而对冬小麦产量进行预测。结果表明:可见光波段、近红外波段和短波红外波段的光谱反射率与产量从返青期到抽穗期分别达到显著负相关、显著正相关和显著负相关水平;通过分析光谱参量与产量的关系,由植被红边与近红外波段反射峰所定义的归一化植被指数(NDVI)与产量的统计相关特征在所有生育期都是极显著水平,统计相关性优于其他光谱参量,利用该参量所构建的非线性模型估产效果最好,可见利用NDVI指数进行产量预报效果更好。  相似文献   

10.
随着农业产业结构的调整,农作物的种植面积和分布有了较大的时空变化,必然对环境、生态和政府决策产生影响。由于近几年北京及其周边地区苜蓿种植面积大量增加,在利用遥感进行土地利用调查和更新时,原来提取冬小麦的一些方法受到苜蓿的干扰,使精度降低。该文主要探讨针对春夏季作物进行监测和面积提取的方法。通过从4月到6月初的地面测量的小麦和苜蓿的4个时期的光谱发现,初期小麦和苜蓿的差异很小,而后期差异增大,尤其在近红外波段处差异最大,5月下旬到6月初是区分小麦和苜蓿的最佳时期。但5月到6月期间不同地块苜蓿的刈割时间不一致,使小麦和苜蓿在单个时相的影像中难以区分。利用3个时相的Landsat近红外波段合成的假彩色影像图很容易区分冬小麦和苜蓿,并能判断苜蓿的刈割时间,经地面验证,该方法分类精度高。且只使用不同时相的一个近红外波段,将大大节约成本和提高处理速度,受薄云和气溶胶的影响小。  相似文献   

11.
基于环境减灾卫星时序归一化植被指数的冬小麦产量估测   总被引:3,自引:5,他引:3  
陈鹏飞  杨飞  杜佳 《农业工程学报》2013,29(11):124-131
依托国产环境减灾卫星构建作物归一化植被指数(NDVI)时序曲线,不但能提供与MODIS-NDVI、AVHRR-NDVI几乎相当的作物生长动态变化信息,还能提供更高分辨率的空间信息,将其应用于作物估产应更有优势。该研究以地处鲁西北平原的山东省禹城市为研究区,探讨基于环境减灾卫星影像构建冬小麦NDVI时序曲线,基于曲线特征参数,开展遥感估产的可行性。结果表明,可依赖环境减灾卫星遥感影像,重建冬小麦NDVI时序曲线,求算其生长季最大NDVI、返青期NDVI、生长季累积NDVI、营养生长期NDVI的变化速率、生殖生长期NDVI的变化速率等特征参数,建立可靠的估产模型。所建模型的建模决定系数为0.87,相对误差为5.02%;交叉检验决定系数为0.78,相对误差为6.87%。该研究可为基于遥感的作物估产提供参考。  相似文献   

12.
针对目前基于计算机视觉估算冬小麦苗期长势参数存在易受噪声干扰且对人工特征依赖性较强的问题,该文综合运用图像处理和深度学习技术,提出一种基于卷积神经网络(convolutional neural network, CNN)的冬小麦苗期长势参数估算方法。以冬小麦苗期冠层可见光图像作为输入,构建了适用于冬小麦苗期长势参数估算卷积神经网络模型,通过学习的方式建立冬小麦冠层可见光图像与长势参数的关系,实现了农田尺度冬小麦苗期冠层叶面积指数(leaf area index,LAI)和地上生物量(above ground biomass, AGB)的准确估算。为验证方法的有效性,该研究采用以冠层覆盖率(canopy cover, CC)作为自变量的线性回归模型和以图像特征为输入的随机森林(random forest, RF)、支持向量机回归(support vectormachinesregression,SVM)进行对比分析,采用决定系数(coefficientofdetermination,R2)和归一化均方根误差(normalized root mean square error, NRMSE)定量评价估算方法的准确率。结果表明:该方法估算准确率均优于对比方法,其中AGB估算结果的R2为0.7917,NRMSE为24.37%,LAI估算结果的R2为0.8256,NRMSE为23.33%。研究可为冬小麦苗期长势监测与田间精细管理提供参考。  相似文献   

13.
基于遥感数据和气象数据的水旱地冬小麦产量估测   总被引:2,自引:2,他引:2  
研究利用遥感数据进行了运城地区冬小麦不同生育时期归一化差值植被指数和产量关系的研究,利用气象数据和光谱数据构建了冬小麦光谱产量模型、气象产量模型以及光谱气象产量模型。结果表明:运城地区水旱地冬小麦均以5月8日左右的NDVI值与产量相关性最好,且达极显著水平,因此该时期为建立冬小麦遥感估产模型的最佳时相。通过对冬小麦光谱产量模型、气象产量模型以及光谱气象产量模型预测效果进行的F检验,表明各模型均达到极显著水平。与其他两种模型相比,光谱气象产量模型的决定系数(R2)有明显的提高,并且相对均方根误差(RRMSE  相似文献   

14.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:13,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

15.
冬小麦叶面积指数(LAI, leaf area index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

16.
WOFOST(world food studies)模型可用于模拟冬小麦全生育期内的时序叶面积指数(leaf area index, LAI),各器官生物量以及最终产量,对冬小麦的长势监测与产量预估有着重要意义。但将WOFOST模型用于中国具体区域的冬小麦生长模拟时,存在着参数定标困难、模拟结果不够准确等严重问题。目前对该模型的定标大多依靠研究者的经验进行,虽已总结出了一套从标定到模拟应用的研究方法,但在区域模拟时仍然存在很多问题。为此,该文以较易获取的LAI为参考指标,结合潜在生长水平模式下的WOFOST模型在衡水地区的应用,提出了一种"区域优化标定,像元同化修正"的研究方法:首先在区域尺度上对WOFOST模型进行优化标定,利用扩展傅里叶幅度灵敏度检验法(extend fourier amplitude sensitivity test, EFAST)分析模型各个参数的敏感性,在此基础上选择了可以迅速找到全局最优解的SCE(shuffled complex evolution)算法对总敏感度最高的5个参数进行优化,并将优化前后的时序LAI曲线进行对比;其次运用第一步确定的模型最优参数,在对区域内每个像元进行模拟时,结合Sentinel-2卫星数据反演所得的各个像元LAI,利用集合卡尔曼滤波(ensemble kalman filter, EnKF)在像元尺度上对LAI进行同化修正,并结合采样点的2次实测LAI数据对同化所得结果进行验证。试验发现,优化标定后的WOFOST模型模拟所得LAI曲线更接近所给的LAI真值,在此基础上结合数据同化模拟得出的衡水地区每个像元LAI的R2达到0.87,RMSE仅为0.62。因此,与原来只能通过经验进行定标的方法相比,该方法有效地解决了WOFOST模型在具体应用中亟待解决的复杂标定问题,并且结合同化修正有效地提高了模型在各个像元的模拟精度,R2由0.70~0.83提升至了0.87,RMSE由0.89~1.36降低至了0.62。同时该文也提供了从模型标定到具体模拟整个过程中各个环节的思路与方法,有利于促进WOFOST模型在区域尺度上的应用。  相似文献   

17.
基于作物及遥感同化模型的小麦产量估测   总被引:2,自引:3,他引:2  
为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。  相似文献   

18.
基于时间序列LAI和ET同化的冬小麦遥感估产方法比较   总被引:5,自引:8,他引:5  
为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和SWAP模拟LAI、ET趋势变化信息构建代价函数,以SCE-UA作为优化算法最小化代价函数,重新初始化SWAP模型中的出苗日期和灌溉量2个参数。重点比较了基于向量夹角和一阶差分2种代价函数的冬小麦单产估测精度。结果表明,同化MODIS LAI和ET后,冬小麦产量的估测精度比未同化精度(r=0.57,RMSE=1 192 kg/hm2)有显著提高,并且基于向量夹角代价函数法同化策略的单产估测精度(r=0.75,RMSE=494 kg/hm2)高于一阶差分代价函数法(r=0.73,RMSE=667 kg/hm2)的估测精度。该方法为其他区域的水分胁迫模式下遥感与作物模型双变量数据同化提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号