共查询到15条相似文献,搜索用时 62 毫秒
1.
基于多时相IRS-P6卫星AWiFS影像的水稻种植面积提取方法 总被引:3,自引:2,他引:3
水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区安徽省怀远县作为试验区,利用2005年6月24日和9月9日的两个水稻典型物候期的IRS-P6卫星AWiFS数据对水稻种植面积识别进行了试验研究,根据两期水稻提取结果进行分区提取得到了较为准确的水稻种植面积。经过与IRS-P6高分辨率LISS-3识别结果进行对比分析,测量结果总体像元精度为88.58%,区域总量一致性为97.63%,略低于高分辨率识别结果。通过试验研究得到以下初步结论:1)利用多时相的IRS-P6卫星AWiFS数据分别分类后结果,进行分区提取的方法可以较精确的提取水稻的种植面积;2)水稻种植面积同样可以利用乳熟期的IRS-P6卫星AWiFS单期影像较准确的获得;3)IRS-P6卫星影像数据在农作物种植面积提取应用中有巨大的应用潜力。 相似文献
2.
水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P 6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区安徽省怀远县作为试验区,利用2005年6月24日和9月9日的两个水稻典型物候期的IRS-P 6卫星AW iFS数据对水稻种植面积识别进行了试验研究,根据两期水稻提取结果进行分区提取得到了较为准确的水稻种植面积。经过与IRS-P 6高分辨率L ISS-3识别结果进行对比分析,测量结果总体像元精度为88.58%,区域总量一致性为97.63%,略低于高分辨率识别结果。通过试验研究得到以下初步结论:1)利用多时相的IRS-P 6卫星AW iFS数据分别分类后结果,进行分区提取的方法可以较精确的提取水稻的种植面积;2)水稻种植面积同样可以利用乳熟期的IRS-P 6卫星AW iFS单期影像较准确的获得;3)IRS-P 6卫星影像数据在农作物种植面积提取应用中有巨大的应用潜力。 相似文献
3.
针对仅利用单一遥感影像数据获取农作物信息精度不够问题,该文选择冬小麦主产地河南省兰考县乡镇作为研究区,以2017年多时相中分辨率Landsat8 OLI影像和Google earth上下载的亚米级高分影像为遥感数据源,结合光谱差异和农田地块信息实现冬小麦的精确提取。该算法首先构建不同时相决策树模型,分别实现2个时相的冬小麦区域初步提取;其次通过将对高分影像多尺度分割产生的地块信息分别与2个时相冬小麦播种面积初步区域相互叠加,完成地块单元控制下的冬小麦播种面积分地块统计,并通过设定不同统计阈值,分析落在每一地块单元下的冬小麦区域,生成基于地块单元的冬小麦播种面积分布图;最后通过多时相交叉验证,获取最终冬小麦播种区域。结果表明:该方法能更加准确提取冬小麦种植面积,保持较低的误判率(1.3%)水平下,得到较高的提取正确率(95.9%),较通过对比单一Google earth高分辨率影像获取冬小麦精度(85.6%)高,该研究对通过融合多源多时相影像数据获取农作物提供参考。 相似文献
4.
多时相遥感影像检测平乐县晚稻种植面积变化 总被引:1,自引:2,他引:1
为检测中国主要的粮食作物水稻的种植面积变化,该文以广西平乐县为例,利用多时相陆地卫星专题成像仪(landsat thematic mapper)影像数据和面向对象的分类方法,提取出晚稻种植的变化区域。该文探索了变化强度计算和阈值确定的方法,并利用晚稻在不同时相的影像光谱特征变化来提取晚稻种植区域。试验结果表明:3种变化强度计算方法中,变化向量分析法对河流、滩地变化的抑制效果优于相关系数方法,而相关系数方法对山体阴影的抑制效果则优于变化向量分析法,向量相似度法对山体阴影非常敏感,对水田变化则敏感度较低;3种阈值确定方法中最小错误率方法比最大类间方差法更为精确,比双窗口变步长阈值搜寻法更为稳定。综合利用3种变化提取方法对平乐县晚稻种植面积变化进行检测,得到变化检测混淆矩阵总正确率为96.8%,稻田面积变化误差为2.85%。该方法可为作物种植面积的变化检测提供参考。 相似文献
5.
黑龙江省稻田面积扩张引起农区地类发生巨大变化,利用遥感手段快速动态监测稻田面积扩张的变化,可为水稻产量估算、水土资源开发利用和评价提供科学决策依据。该研究以中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)地表反射率和植被指数数据为主要数据源,融合归一化光谱特征、分层分类、最大似然法、阈值和指数时间序列等方法建立决策树模型,对2003-2018年黑龙江省的稻田、旱地、草甸、滩地、森林、水体、城镇等进行遥感解译,并采用混淆矩阵法验证结果精度。结果表明2003-2018年稻田识别Kappa系数达到0.899~0.961,总精度达到了85.5%~92.3%。黑龙江省新增稻田主要由旱地、草甸和滩地转变,水稻种植面积从2003-2018年扩大了3倍,平均每年扩张158 100 hm2,稻田播种区域的中心向北延伸约160 km。该研究基于黑龙江省不同植被的物候特征,确定了不同地类的决策树分类判定标准,为黑龙江省稻田面积变化提供有效的方法。 相似文献
6.
多源遥感信息和特征优选是提高农作物识别精度的重要支撑,高分六号(GF-6)卫星作为首次引入红边波段的国产卫星,其丰富的光谱信息为作物识别提供了新的思路和解决途径。该研究基于宁夏回族自治区银川市永宁县2018年6月—2019年3月的GF-6数据,充分利用红边优势提取光谱特征、纹理特征和植被指数特征,构建多种特征组合方案,并根据随机森林算法对特征重要性进行度量,选取最优特征组合对酿酒葡萄进行精准识别。结果表明,与单一特征相比,多源遥感特征的增加显著改善了酿酒葡萄分类效果,其中,植被指数贡献程度最大,光谱特征次之;基于随机森林的优选特征组合分类效果最佳,其中,总体分类精度为94.15%,酿酒葡萄用户精度为94.23%,制图精度为92.59%;以实地调查的4个酒庄为验证区,将酿酒葡萄提取结果与统计数据进行对比,面积相对精度均在70%以上,其中优选特征结果相对精度在90%以上,研究结果将为国产卫星红边波段在植被分类和识别方面的应用提供数据参考。 相似文献
7.
GF-1卫星多时相组合近红外数据水稻识别能力 总被引:1,自引:0,他引:1
针对近红外波段水稻识别能力的问题,选择银川市所属的5个县区为研究区域,采用2016年5月18日、6月16日、7月30日、9月13日4个时相GF-1/WFV影像的近红外波段(0.76~2.526μm)数据,基于决策树分类方法,获取了4个单时相、3个多时相条件下的水稻识别结果,并与全波段数据分类结果进行了比较。单时相5、6、7和9月份近红外波段水稻识别精度分别为83.63%、57.40%、75.82%和62.61%,除5月份精度高于全波段5.75个百分点外,其他时相都低于全波段识别精度,6月份相差最高为30.23个百分点。多时相5/6、5/7、5/6/7/9月份组合,近红外水稻识别精度分别为83.76%、93.93%和94.03%,分别比全波段低5.47,高8.58和0.73个百分点。结果表明,水稻生长早期的5月份、中期的7月份,近红外波段可以作为单时相遥感识别数据源,包括生长早期和中期2个时相在内的多时相近红外波段组合都可以作为遥感识别的数据源,研究结果可以作为GF-1数据水稻遥感识别的依据。 相似文献
8.
基于多时相合成孔径雷达与光学影像的冬小麦种植面积提取 总被引:2,自引:2,他引:2
小麦是中国最重要的农作物之一,准确、及时掌握小麦种植面积具有重要意义。以探索合成孔径雷达(synthetic aperture radar,SAR)与光学数据对种植结构复杂地区冬小麦识别的能力,提高识别精度为目的。该研究以多时相SAR(Sentinel-1A)和光学影像(Landsat-8)为数据源,选取种植结构复杂的都市农业区为研究区。构建不同特征向量组合,利用支持向量机(support vector machine,SVM)提取冬小麦种植面积。通过对比分析基于不同特征向量组合的冬小麦识别精度,结果表明:1)使用SAR后向散射数据得到85.7%的制图精度和87.9%的用户精度;2)添加SAR数据纹理信息,总体精度高达90.6%,比单独使用后向散射数据在制图精度和用户精度上分别提高7.6%和6.7%;3)当SAR数据和光学影像结合时,总体精度高达95.3%(制图精度97%,用户精度98.4%),比单独使用SAR数据在制图精度和用户精度上分别提高3.7%和3.8%。因此,基于SAR数据的都市农业区冬小麦分类,有着较高分类精度,纹理信息和光学影像的添加能有效提高识别精度。研究结果可为SAR数据的农作物识别和应用提供理论基础。 相似文献
9.
基于多时相OLI数据的宁夏大尺度水稻面积遥感估算 总被引:2,自引:3,他引:2
为客观获取宁夏水稻面积空间分布信息,也为区域农作物遥感监测奠定技术基础,该文以宁夏回族自治区为研究区域,选择美国LandSat-8携带的陆地成像仪(operational land imager,OLI)数据,采用2016年3月11日-7月01日间的15景影像,基于水稻田耕地与水体特征反射率随着季节变化规律的分析,采用归一化植被指数(normalized difference vegetation index,NDVI)、近红外波段反射率(infrared reflectance,IR)、短波指数(short waved index,SWI)3个指数,以及多时相NDVI最大值、IR最小值、SWI最小值3个衍生指数,共6个指数为基础进行决策分类树构建,对全区水稻进行识别与提取,采用该区水稻面积本底遥感调查结果进行精度验证,水稻种植面积提取误差仅.4.22%,Kappa系数为0.83,水稻空间分布的用户分类精度分别为85.11%,制图精度为81.67%;同时与监督分类方法提取的水稻面积进行对比,该文方法提取水稻的用户精度提高了8.13个百分点,制图精度更是提高了20.01个百分点。研究结果表明,利用中高分辨率的OLI遥感时间序列卫星影像,在大宗农作物时间序列的变化规律分析基础上,构建分类决策树,可以准确地提取大宗农作物种植面积,是区域农作物面积遥感监测业务运行中具有潜力的方法。 相似文献
10.
基于多时相Landsat数据融合的洞庭湖区水稻面积提取 总被引:3,自引:9,他引:3
洞庭湖区作为中国重要的商品粮基地,水稻种植面积的变化对国家粮食安全有重要的影响,准确获取水稻面积及其变化显得十分重要。为解决数据缺失问题,该文利用STARFM(spatial and temporal adaptive reflectance fusion model)模型融合高时间分辨率的MODIS数据与中等空间分辨率的Landsat数据,得到时序Landsat NDVI数据,并利用时序Landsat NDVI数据对水稻种植面积进行提取。结果显示,该方法能够有效地提取水稻种植面积,总体分类精度94.52%,Kappa系数为0.9128。水稻分布几乎覆盖整个研究区,水稻种植总面积达7.88×105hm2。双季稻种植面积为7.75×105hm2,主要集中于湖区北部及西北部,且分布较连续。一季稻种植面积为1.3×104hm2,分布相对零散,有小范围集中于湖区中部及西北部。 相似文献
11.
艾叶具有巨大的食用和医用价值,近些年艾草种植面积在中国南方地区显著增加。掌握艾草空间分布信息对于区域作物种植结构调整、艾草产业布局优化具有重要现实意义。该研究以中国艾草主要生产地--湖北省蕲春县为例,探讨国产高分1号(GF-1)和高分6号(GF-6)卫星影像识别艾草的潜力。本文首先基于高分影像构建了20个光谱特征,然后采用随机森林分类器进行分类,最后分析了红边指数对识别艾草的贡献度。为了评估协同GF-1和GF-6影像识别艾草的潜力,研究还比较了不同影像组合情景识别艾草的精度。结果表明,协同GF-1和GF-6影像提取的蕲春县艾草的用户精度是92.73%,制图精度是88.74%,均显著高于基于单一GF-1或GF-6影像识别艾草的精度。各乡镇艾草遥感制图面积和统计面积拟合的相关性系数R2达到0.7,表明研究结果能够准确反映艾草的种植面积和空间分布。基于随机森林的重要性得分排名前50的特征中,红边波段以及红边植被指数的数量占比达54%,其中6月23日GF-6影像的红边波段I贡献度得分最高,是识别艾草的最优光谱特征。GF-6的另一新增的紫波段相较于其他传统波段,也对于区分艾草和其他作物做出了重要贡献。5月上旬和9月上旬分别为艾草第一茬和第二茬叶片快速繁殖生长阶段,是艾草的最佳识别时期,6月下旬和9月下旬也是区分艾草和其他作物的关键时期。研究表明,GF-6 WFV影像的新增波段以及基于红边波段构建的植被指数能够有效提高作物识别的准确性,协同GF-1和GF-6影像通过提高影像时间信息,能较好捕获作物的关键物候特征,从而提高作物识别精度。该研究为充分发挥多源国产高分卫星协同利用优势提供了典型应用示范,呈现的作物识别方法不仅适用于艾草,也适用于其他区域和其他农作物。 相似文献
12.
基于多时相遥感影像的作物种植信息提取 总被引:5,自引:8,他引:5
为了快速、准确地在遥感影像上对作物种植信息进行提取,该研究运用多时相的TM/ETM+遥感影像数据和13幅时间序列的MODISEVI遥感影像数据,采取基于生态分类法的监督分类与决策树分类相结合的人机交互解译方法,建立决策树识别模型,对黑龙港地区的主要作物进行遥感解译,总体分类精度达到了91.3%,与单纯对TM影像进行监督分类相比,棉花、玉米、小麦、蔬菜4类作物的相对误差的绝对值分别降低了1.3%、20.5%、2.0%、13.8%。结果表明该方法的分类精度高,能较好的反映作物的分布状况,可为该地区主要作物种植结构调整提供科学依据,还可为其他区域尺度作物分布信息的提取提供参考。 相似文献
13.
基于GF-1卫星数据的农作物种植面积遥感抽样调查方法 总被引:8,自引:7,他引:8
GF-1号卫星是中国2013年4月26日发射的一颗高分辨率遥感卫星,为解决该新型卫星数据在农作物对地抽样遥感调查中的应用技术方法问题,该文针对GF-1号卫星数据的特点,研究了基于GF-1号卫星16m WFV传感器和2m/8m PMS传感器卫星数据的农作物种植面积遥感抽样调查方法。根据研究区物候历,选择农作物识别关键期的16m WFV传感器数据进行多时相农作物种植面积的中分辨率遥感提取;在中分辨率农作物面积遥感分类图基础上,计算研究区域的MORAN I指数,确定格网抽样单元的大小,进行多目标农作物的MPPS(multivariate probability proportional to size)抽样;对抽样单元采用2m/8 m PMS传感器卫星数据进行高分辨率农作物面积制图;最后根据MPPS抽样方法进行总体农作物种植面积的推断,并计算CV值,评价抽样精度。以江苏省东台市为研究区对GF-1号卫星数据进行了应用研究。研究结果表明,GF-1号卫星数据完全可以应用于县级农作物种植面积的提取,农作物种植面积提取精度优于90%。 相似文献
14.
基于无人机遥感影像的水稻种植信息提取 总被引:4,自引:5,他引:4
水稻是中国南方最主要的粮食作物,种植面积波动对国家粮食稳定有很大影响。通过无人机遥感试验获取多幅有重叠区域的图像,使用Agisoft photoscan软件拼接重构试验区的完整图像,利用多尺度分割方法将试验区域分割成若干对象,并基于统计方法提取对象的光谱特征、几何特征和纹理特征;然后,建立识别水稻地块的二分类Logistic回归模型,特征指标为形状指数、红色均值、红色标准偏差、最大化差异度量、灰度共生矩阵同质性和灰度共生矩阵非相似性。结果表明:模型辨识训练样本集的正确率为100%,辨识检验样本的正确率为97%,模型应用于辨识验证区域水稻田块,总体正确率为98%。最后基于累计像素方法测算水稻田块的面积,并与目视解译测算的结果对比,面积误差小于3.5%,研究方法识别水稻田块效果好,面积测算准确率高。因此,该研究对利用无人机遥感影像普查水稻种植信息具有一定的适用性。 相似文献
15.
基于多时相遥感数据的农田分类提取 总被引:1,自引:3,他引:1
为深化遥感解译在农田类型自动提取研究中的应用,了解研究区内农业资源的现状,该文以镇赉县为试验区,设计了基于多时相遥感数据的农田分类提取方案。该方案通过计算地表植被指数时序变化的变程(主要分类变量),结合研究区影像纹理局部方差、修正土壤调整指数和地表水体指数构建多维特征空间数据,对研究区内的水田和旱地进行分类提取。结果表明:1)该算法的总体分类精度为94%,Kappa系数为0.87:2)水田的遥感提取精度为98.3%,旱地为98%;3)水田占全区总面积的13.26%,旱地为20.12%,旱地是研究区内的主要农田类型。该文研究成果为未来农业发展的政策和规划提供一定的参考依据。 相似文献