共查询到15条相似文献,搜索用时 78 毫秒
1.
顾晋罗素云 《农业装备与车辆工程》2021,59(7):98-103
为了有效地解决传统车辆检测算法中存在的泛化能力差、识别率不高的问题,提出了一种基于改进YOLO v3的车辆检测算法.改进的车辆算法对原YOLO v3中的模型进行剪枝处理,采用Darknet-53网络结构提取特征,同时结合回归损失函数GIOU算法对检测精度进行提高.在运用K-means++聚类分析算法处理数据基础上,运用... 相似文献
2.
基于改进YOLO v5的自然环境下樱桃果实识别方法 总被引:1,自引:0,他引:1
为提高对樱桃果实识别的准确率,提升果园自动采摘机器人的工作效率,使用采集到的樱桃原始图像以及其搭配不同数据增强方式得到的数据图像共1816幅建立数据集,按照8∶2将数据集划分成训练集与测试集。基于深度学习网络,利用YOLO v5模型分别对不同数据增强方式以及组合增强方式扩增后的樱桃数据集进行识别检测,结果表明离线增强与在线增强均对模型精度提升有一定的正向促进作用,其中采用离线数据增强策略能够显著且稳定的增加检测精度,在线数据增强策略能够小幅度提高检测精度,同时使用离线增强以及在线增强能够最大幅度的提升平均检测精度。针对樱桃果实之间相互遮挡以及图像中的小目标樱桃检测难等导致自然环境下樱桃果实检测精度低的问题,本文将YOLO v5的骨干网络进行改动,增添具有注意力机制的Transformer模块,Neck结构由原来的PAFPN改成可以进行双向加权融合的BiFPN,Head结构增加了浅层下采样的P2模块,提出一种基于改进YOLO v5的自然环境下樱桃果实的识别网络。实验结果表明:相比于其他已有模型以及单一结构改进后的YOLO v5模型,本文提出的综合改进模型具有更高的检测精度,使平均精度均值2提高了29个百分点。结果表明该方法有效的增强了识别过程中特征融合的效率和精度,显著地提高了樱桃果实的检测效果。同时,本文将训练好的网络模型部署到安卓(Android)平台上。该系统使用简洁,用户设备环境要求不高,具有一定的实用性,可在大田环境下对樱桃果实进行准确检测,能够很好地满足实时检测樱桃果实的需求,也为自动采摘等实际应用奠定了基础。 相似文献
3.
针对玉米种质资源遗传多样性丰富导致雄穗大小、形态结构及颜色呈现较大差异,无人机搭载可见光传感器相比地面采集图像分辨率低,以及图像中部分雄穗过小、与背景相似度高、被遮挡、相互交错等情况带来的雄穗检测精度低的问题,提出了一种改进YOLO v7-tiny模型的玉米种质资源雄穗检测方法。该方法通过在YOLO v7-tiny中引入SPD-Conv模块和VanillaBlock模块,以及添加ECA-Net模块的方式,增强模型对雄穗特征的提取能力。利用自建的玉米种质资源雄穗数据集,训练并测试改进模型。结果表明,改进YOLO v7-tiny的平均精度均值为94.6%,相比YOLO v7-tiny提升1.5个百分点,相比同等规模的轻量级模型YOLO v5s、YOLO v8s分别提升1.0、3.1个百分点,显著降低了图像中雄穗漏检及背景误检为雄穗的发生,有效减少了单穗误检为多穗和交错状态下雄穗个数误判的情况。改进YOLO v7-tiny模型内存占用量为17.8MB,推理速度为231f/s。本文方法在保证模型轻量化的前提下提升了雄穗检测精度,为玉米种质资源雄穗实时、精准检测提供了技术支撑。 相似文献
4.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。 相似文献
5.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。 相似文献
6.
为在自然环境下自动准确地检测樱桃番茄果实的成熟度,实现樱桃番茄果实自动化采摘,根据成熟期樱桃番茄果实表型特征的变化以及国家标准GH/T 1193—2021制定了5级樱桃番茄果实成熟度级别(绿熟期、转色期、初熟期、中熟期和完熟期),并针对樱桃番茄相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进的轻量化YOLO v7模型的樱桃番茄果实成熟度检测方法。该方法将MobileNetV3引入YOLO v7模型中作为骨干特征提取网络,以减少网络的参数量,同时在特征融合网络中加入全局注意力机制(Global attention mechanism, GAM)模块以提高网络的特征表达能力。试验结果表明,改进的YOLO v7模型在测试集下的精确率、召回率和平均精度均值分别为98.6%、98.1%和98.2%,单幅图像平均检测时间为82 ms,模型内存占用量为66.5 MB。对比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分别提升18.7、0.2、0.3、0.1个百分点,模型内存占用量也最少。研究表明改进的YOLO v7模型能够为樱桃番茄果实的自... 相似文献
7.
为实现香梨自动化采摘,本文以YOLO v7-S为基础模型,针对果园中香梨果实、果叶和枝干之间相互遮挡,不易精准检测的问题,设计了一种轻量化香梨目标检测M-YOLO v7-SCSN+F模型。该模型采用MobileNetv3作为骨干特征提取网络,引入协同注意力机制(Coordinate attention,CA)模块,将YOLO v7-S中的损失函数CIoU替换为SIoU,并联合Normalized Wasserstein distance (NWD)小目标检测机制,以增强网络特征表达能力和检测精度。基于傅里叶变换(Fourier transform,FT)的数据增强方法,通过分析图像频域信息和重建图像振幅分量生成新的图像数据,从而提高模型泛化能力。实验结果表明,改进的M-YOLO v7-SCSN+F模型在验证集上的平均精度均值(mAP)、精确率和召回率分别达到97.23%、97.63%和93.66%,检测速度为69.39f/s,与Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在验证集上进行性能比较,其平均精度均值(mAP)分别提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86个百分点。此外,改进的M-YOLO v7-SCSN+F模型内存占用量与YOLO v8n和RT-DETR-R50检测模型对比减少16.47、13.30MB。本文提出的检测模型对成熟期香梨具有很好的目标检测效果,为背景颜色相近小目标检测提供参考,可为香梨自动化采摘提供有效的技术支持。 相似文献
8.
为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化模型结构、降低运算量。采用Mosaic数据增强方法扩充图像数据集(8621幅图像),对模型进行微调,实现了马铃薯中土块石块的检测。测试表明,剪枝后模型总参数量减少了94.37%,模型存储空间下降了187.35 MB,前向运算时间缩短了0.02 s,平均精度均值(Mean average precision, mAP)下降了2.1个百分点,说明剪枝处理可提升模型性能。为验证模型的有效性,将本文模型与5种深度学习算法进行比较,结果表明,本文算法mAP为96.42%,比Faster R-CNN、Tiny-YOLO v2、YOLO v3、SSD分别提高了11.2、11.5、5.65、10.78个百分点,比YOLO v4算法降低了0.04个百分点,模型存储空间为20.75 MB,检测速度为78.49 f/s,满足实际生产需要。 相似文献
9.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。 相似文献
10.
准确识别玉米幼苗是实现自动化精准除草、间苗、补种等苗期作业的重要前提。为此,针对自然环境下农业机器人对玉米幼苗的检测问题,结合深度残差网络强大的特征提取能力和级联网络连接多个检测器不断优化预测结果的特点,对Cascade R-CNN模型进行改进,使之适用于自然环境下玉米幼苗的检测。模型使用残差网络ResNet-50与特征金字塔网络FPN作为特征提取器提取玉米幼苗图像的特征图,利用区域建议网络生成目标候选框,通过感兴趣区域池化将不同大小的特征图转换为统一尺寸的输出;最后,分类回归模块根据特征图对目标进行分类,并使用边框回归修正候选框的位置和大小,从而完成玉米幼苗目标检测。同时,以3~5叶期玉米幼苗为研究对象,采集其田间图像并制作数据集,用所制作的数据集对Cascade R-CNN模型进行训练,选取AlexNet、VGG16、ResNet18、ResNet50与ResNet50+FPN分别作为特征提取网络进行对比试验,确定所提出的ResNet50+FPN为最优特征提取网络,平均精度均值(mAP)为91.76%,平均检测时间为6.5ms。选取双阶段目标检测模型Faster R-CNN、R-F... 相似文献
11.
肉鸽行为表现与鸽舍环境舒适度和肉鸽健康状况密切相关。为实现肉鸽行为精准检测、及时掌握肉鸽健康状况,提出了基于改进YOLO v4模型的肉鸽行为检测方法。由于肉鸽社交等行为特征相似性程度高,为了在复杂环境下准确识别肉鸽行为,本文采用自适应空间特征融合(Adaptively spatial feature fusion, ASFF)模块改进YOLO v4模型,在特征金字塔网络中增加ASFF模块,根据特征权值自适应融合多层特征,充分利用不同尺度特征信息,并且ASFF模块能有效过滤空间冲突信息、抑制反向梯度不一致问题、改善特征比例不变性以及降低推理开销。基于多时段的肉鸽清洁和社交行为数据集,自制5类肉鸽行为图像数据库,采用OpenCV工具进行模糊、亮度、水雾和噪声等处理扩充图像数据集(共10 320幅图像),增加数据多样性和模拟不同识别场景,提升模型泛化能力。本文按照比例8∶2划分训练集和验证集,训练总共迭代300个周期,对不同时段、角度、尺寸的肉鸽数据集进行检测。检测结果表明,在阈值0.50和0.75时YOLO v4-ASFF检测精度比YOLO v4的mAP50和mAP<... 相似文献
12.
针对养殖池塘内单环刺螠自动采捕和产量预测应用需求,提出一种基于深度学习的单环刺螠洞口识别方法,以适用于自动采捕船的嵌入式设备。该方法通过将YOLO v4的主干网络CSPDarkNet53替换为轻量型网络Mobilenet v2,降低网络参数量,提升检测速度,并在此基础上使用深度可分离卷积块代替原网络中Neck和Detection Head部分的普通卷积块,进一步降低模型参数量;选取带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法进行图像增强;利用K-means++算法对数据集进行重新聚类,对获得的新锚点框尺寸进行线性缩放优化,以提高目标检测效果。在嵌入式设备Jetson AGX Xavier上部署训练好的模型,对水下单环刺螠洞口检测的平均精度均值(Mean average precision,mAP)可达92.26%,检测速度为36f/s,模型内存占用量仅为22.2MB。实验结果表明,该方法实现了检测速度和精度的平衡,可满足实际应用场景下模型部署在单环刺螠采捕船嵌入式设备的需求。 相似文献
13.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。 相似文献
14.
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。 相似文献
15.
基于改进YOLO v4网络的马铃薯自动育苗叶芽检测方法 总被引:1,自引:0,他引:1
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。 相似文献