首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Bumble bees [Bombus impatiens (Cresson)] are widely used for supplemental pollination of greenhouse vegetables and are at risk of pesticide exposure while foraging. The objective of this study was to determine the lethal and sub‐lethal effects of four insecticides (imidacloprid, abamectin, metaflumizone and chlorantraniliprole) and three fungicides (myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil) used or with potential for use in Ontario greenhouse vegetable production to B. impatiens. RESULTS: Imidacloprid, abamectin, and metaflumizone were harmful to worker bees following direct contact, while chlorantraniliprole and all fungicides tested were harmless. Worker bees fed imidacloprid‐contaminated pollen had shortened life spans and were unable to produce brood. Worker bees consumed less pollen contaminated with abamectin. Metaflumizone, chlorantraniliprole and all fungicides tested caused no sub‐lethal effects in bumble bee micro‐colonies. CONCLUSION: We conclude that the new reduced risk insecticides metaflumizone and chlorantraniliprole and the fungicides myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil are safe for greenhouse use in the presence of bumble bees. This information can be used preserve greenhouse pollination programs while maintaining acceptable pest management. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Five formulated insecticides (lambda‐cyhalothrin at 10 mg m?2, bifenthrin at 50 mg m?2, fipronil at 10 mg m?2, fenitrothion at 50 mg m?2, imidacloprid at 5 mg m?2) and one active ingredient (DDT at 500 mg m?2) were evaluated using a surface contact method against early and late instars and adults of two strains of the tropical bed bug, Cimex hemipterus (F.). Synergism of lambda‐cyhalothrin and fipronil using piperonyl butoxide (PBO) was also assessed. RESULTS: The order of susceptibility of different stages of bed bugs was as follows: early stage ? lambda‐cyhalothrin > bifenthrin = imidacloprid > fipronil > fenitrothion > DDT; late stage—lambda‐cyhalothrin > bifenthrin > fenitrothion > imidacloprid > fipronil > DDT; adult—lambda‐cyhalothrin > imidacloprid > bifenthrin > fenitrothion > fipronil > DDT. The late instars exhibited significantly higher LT50 among the life stages. The addition of PBO to fipronil increased the susceptibility of the insects. CONCLUSIONS: Lambda‐cyhalothrin, bifenthrin, fenitrothion and fipronil at the recommended application rates were effective against C. hemipterus. Although imidacloprid demonstrated good initial response against C. hemipterus, the insects showed substantial recovery 72 h post‐treatment. The late instars (fourth and fifth instars) should be used as the model for toxicological evaluation. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Abstract

Aleuroclava jasmini (Hemiptera: Aleyrodidae) is a major insect pest of paper mulberry (Broussonetia papyrifera) in Iran, negatively affecting its production. Considering the importance of oils in the integrated management programs of such pests, the present study examined the possibility of whitefly control on paper mulberry plant to assess mortality rate (MR), synergistic rate (SR), resistance rate (RR), and lethal concentration for 50% of the population (LC50) of oils and common insecticide in populations from four areas of Tehran, Iran (one susceptible and three non-susceptible). The best chemical treatments against A. jasmini adults and nymphs in paper mulberry plants were neem oil (1?ml L?1) mixed with deltamethrin (0.5?ml L?1) or with buprofezin (1?ml L?1). The neem, akylarylpolyglyglycol ether and volk oils mixed with deltamethrin or buprofezin also had synergistic effects on adults and nymphs of A. jasmini, respectively, in Azadi, Shahrake Gharb, and Vanak areas (non-susceptible populations), but with higher concentrations (> LC50) and lower SR than in Garm Dareh area (susceptible population). We observed that A. jasmini adults showed the greatest resistance to deltamethrin in Vanak area and nymphs of this pest to buprofezin in Shahrake Gharb area.  相似文献   

4.
为确定防治吐伦球坚蚧效果好的药剂及最佳防治时机,对吐伦球坚蚧越冬、越夏若虫进行了室内毒力测定及田间防效试验.室内毒力测定结果表明,5%啶虫脒乳油对越冬、越夏若虫活性最高,LC50分别为31.268 mg/L和22.056mg/L.田间喷雾试验,14.6%噻虫嗪+9.4%高效氯氟氰菊酯悬浮剂对越夏若虫防效达99%以上.5%啶虫脒乳油对越冬若虫防效为98.76%.注干试验,25%噻虫嗪水分散粒剂200倍液和20%吡虫啉乳油50倍液注干15 d后,对涌散期若虫防效为90.46%和94.16%;对越夏固定期若虫防效为92.51%和82.57%.以5%啶虫脒乳油和20%吡虫啉乳油对越冬若虫进行喷雾,防治效果与防治时机最佳.  相似文献   

5.
The toxicity of six pesticides (four insecticides and two fungicides) to Orius majusculus (Reuter) (Hemiptera: Anthocoridae) adults and nymphs was determined using different exposure methods. Mortality upon topical exposure to abamectin, endosulfan and spinosad at recommended field doses ranged from 56% to 100% after 24 h. However, in leaf residue tests, toxicity to both life stages decreased significantly, ranging from 0% to 33% mortality. Benomyl and copper salts + mancozeb (fungicides) were much less toxic to O. majusculus, with less than 15% mortality of either adults or nymphs in topical and residue bioassays. In persistent toxicity tests, insects were exposed to the same three insecticides for 4 days; mortality varied from 38% to 100%. Egg hatching was not significantly affected when abamectin, endosulfan and spinosad were topically applied. Number of eggs laid per female in choice and no-choice tests did not differ significantly from the control. The insecticides did not show considerable repellent effect in the choice tests. Topical, residue and systemic uptake methods were also compared to determine the differences in the toxicity levels of imidacloprid, a systemic insecticide. However, 100% mortality occurred with all methods.  相似文献   

6.
BACKGROUND: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits the causal bacteria of the devastating citrus disease huanglongbing (HLB). Because of the variation in spatial and temporal uptake and systemic distribution of imidacloprid applied to citrus trees and its degradation over time in citrus trees, ACP adults and nymphs are exposed to concentrations that may not cause immediate mortality but rather sublethal effects. The objective of this laboratory study was to determine the effects of sublethal concentrations of imidacloprid on ACP life stages. RESULTS: Feeding by ACP adults and nymphs on plants treated daily with a sublethal concentration (0.1 µg mL?1) of imidacloprid significantly decreased adult longevity (8 days), fecundity (33%) and fertility (6%), as well as nymph survival (12%) and developmental rate compared with untreated controls. The magnitude of these negative effects was directly related to exposure duration and concentration. Furthermore, ACP adults that fed on citrus leaves treated systemically with lethal and sublethal concentrations of imidacloprid excreted significantly less honeydew (7–94%) compared with controls in a concentration‐dependent manner suggesting antifeedant activity of imidacloprid. CONCLUSIONS: Sublethal concentrations of imidacloprid negatively affect development, reproduction, survival and longevity of ACP, which likely contributes to population reductions over time. Also, reduced feeding by ACP adults on plants treated with sublethal concentrations of imidacloprid may potentially decrease the capacity of ACP to successfully acquire and transmit the HLB causal pathogen. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
8.
BACKGROUND: Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non‐target crayfish associated with rice–crayfish crop rotations. One solution to the near‐exclusive reliance on pyrethroids in a rice–crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice–crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda‐cyhalothrin and etofenprox. RESULTS: Neonicotinoid insecticides are at least 2–3 orders of magnitude less acutely toxic (96 h LC50) than pyrethroids to juvenile Procambarid crayfish: lambda‐cyhalothrin (0.16 µg AI L?1) = etofenprox (0.29 µg AI L?1) ? clothianidin (59 µg AI L?1) > thiamethoxam (967 µg AI L?1) > dinotefuran (2032 µg AI L?1). CONCLUSION: Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice–crayfish crop rotations. Further field‐level neonicotinoid acute and chronic toxicity testing with crayfish is needed. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
BACKGROUND: The insecticides spinosad and deltamethrin are being increasingly used in pest management programmes. In order to assess further their toxic effects to target and non‐target insect species, an evaluation was made of their insecticidal profile on Bactrocera oleae (Rossi) and Drosophila melanogaster (Meig.). Moreover, possible genotoxic effects of the two pesticides were investigated using the somatic mutation and recombination test (SMART) in D. melanogaster. RESULTS: Both insecticides were highly effective against B. oleae, exhibiting similar LC50 values. Moreover, they were found to be more effective against Bactrocera than against Drosophila adults. However, spinosad was significantly more toxic than deltamethrin to D. melanogaster. The results showed a lack of genotoxic activity of both insecticides under the in vivo experimental procedure employed, at least at applied doses. CONCLUSION: The present study provides information for lethal and sublethal effects of spinosad and deltamethrin against a target and a non‐target species. Both insecticides can exert high toxicity to B. oleae when adults are exposed even to very low doses for long periods of time. The results contribute to the database on the genotoxic potential of spinosad and deltamethrin, suggesting a safety profile for both insecticides. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Neoseiulus fallacis (Garman) is a key predator of tetranychid mites in integrated pest management (IPM) programs across Canada. This study identified compounds that would be recommended for tier‐II field evaluations in an IPM program. RESULTS: The overall egg mortality caused by the six insecticides was negligible as it extended from 0 to 12.1%. Imidacloprid was classified as toxic to adults. The label rate was 7.73‐fold the LC50. Thiamethoxam was classified as moderately toxic to adults, and its label rate was 2.87‐fold the LC50. Acetamiprid and spinosad were classified as marginally toxic, and their label rates were respectively 0.99‐ and 0.45‐fold the LC50 for adults. Thiacloprid and methoxyfenozide were virtually innocuous to adults. CONCLUSION: Methoxyfenozide was totally harmless to all stages of N. fallacis, and it would be included in IPM programs immediately. Acetamiprid, spinosad and thiacloprid had varying degrees of mild toxicity to at least one growth stage of the predator. Therefore, they were recommended for tier‐II field testing according to their label claims. Imidacloprid and thiamethoxam were toxic to moderately toxic to adults and had significant adverse effects on fecundity. Therefore, they would be field evaluated only if alternatives were unavailable. Copyright 2010 Crown in the right of Canada. Published by JohnWiley & Sons, Ltd  相似文献   

11.
A German cockroach (Blatella germanica (L)) strain, Apyr‐R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr‐R (97‐ and 480‐fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,‐tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr‐R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43‐ and 48‐fold increases in toxicity of permethrin in ACY and Apyr‐R, respectively. Similarly, injection increased the toxicity of deltamethrin 27‐fold in ACY and 28‐fold in Apyr‐R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr‐R. Apyr‐R showed cross‐resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase‐mediated detoxication is not the mechanism responsible for cross‐resistance. Apyr‐R showed no cross‐resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi‐resistance mechanisms in Apyr‐R did not confer significant cross‐resistance to this compound. Thus, we propose that fipronil could be a valuable tool in integrated resistance management of German cockroaches. © 2001 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae), is a major pest in European winter oilseed rape. Recently, control failures with pyrethroid insecticides commonly used to control this pest have been reported in many European countries. For resistance management purposes, the neonicotinoid insecticide thiacloprid was widely introduced as a new mode of action for pollen beetle control. RESULTS: A number of pollen beetle populations collected in Germany, France, Austria, Great Britain, Sweden, Denmark, Finland, Poland, Czech Republic and Ukraine were tested for pyrethroid resistance using lambda‐cyhalothrin‐coated glass vials (adult vial test). Most of the populations tested exhibited substantial levels of resistance to lambda‐cyhalothrin, and resistance ratios ranged from < 10 to > 2000. A similar resistance monitoring bioassay for the neonicotinoid insecticide thiacloprid was developed and validated by assessing baseline susceptibility data for 88 European pollen beetle populations. A variation of less than fivefold in response to thiacloprid was detected. The thiacloprid adult vial bioassay is based on glass vials coated with an oil‐dispersion‐based formulation of thiacloprid, resulting in a much better bioavailability compared with technical material. Analytical measurements revealed a > 56 and 28 day stability of thiacloprid and lambda‐cyhalothrin in coated glass vials at room temperature, respectively. No cross‐resistance between thiacloprid and lambda‐cyhalothrin based on log‐dose probit–mortality data was detected. CONCLUSION: Pyrethroid resistance in many European populations of M. aeneus was confirmed, whereas all populations are susceptible to thiacloprid when tested in a newly designed and validated monitoring bioassay based on glass vials coated with oil‐dispersion‐formulated thiacloprid. Based on the homogeneous results, it is concluded that thiacloprid could be an important chemical tool for pollen beetle resistance management strategies in European winter oilseed rape. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice–crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non‐target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. RESULTS: The aquatic 96 h median lethal toxicity (LC50) data indicate that technical‐grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC50 of 951 µg L?1 (95% CL = 741–1118 µg L?1). A no observed effect concentration (NOEC) of 480 µg L?1 was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole‐treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. CONCLUSION: Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda‐cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice–crayfish crop rotations than pyrethroids. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
BACKGROUND: The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new‐generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. RESULTS: Mean numbers of second‐ and third‐instar larvae were significantly higher in plants seed‐treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new‐generation adults was reduced by 52 and 39% for plants seed‐treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. CONCLUSION: Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
16.
BACKGROUND: Cashew (Anacardium occidentale L.) has become a very important non‐traditional tree crop in Ghana. The crop is, however, attacked by sap‐sucking insects, particularly the mosquito bug, Helopeltis schoutedeni Reuter, the leaf‐footed bug, Pseudotheraptus devastans (Dist.), and the coreid bug, Anoplocnemis curvipes (F.), which feed on shoots, panicles and fruits. Their damage is characterised by withering of the latter. In Ghana, Oecophylla longinoda Latr. occurs in large numbers on cashew and other native plants, but little is known about its relationship with insect pests. The relationship between O. longinoda and shoot and panicle damage by sap‐sucking bugs and the effectiveness of O. longinoda as a biocontrol agent in the protection of cashew as compared with two chemical insecticides, lambda‐cyhalothrin (Karate®) and cypermethrin + dimethoate (Cyperdim®), were therefore investigated at Bole in the northern region of Ghana. RESULTS: There was a negative correlation between numbers of O. longinoda nests and pest damage. Trees treated with cypermethrin + dimethoate (969 mg AI mL?1 tree?1) and lambda‐cyhalothrin (100 mg AI mL?1 tree?1) recorded the smallest bug numbers, followed by O. longinoda. Trees infested by Oecophylla longinoda and trees treated with cypermethrin + dimethoate and with lambda‐cyhalothrin had less than 6% pest damage to shoots, panicles and fruits, while water‐sprayed trees recorded damage as high as 36.8% (shoots) in February, 32.9% (panicles) in February and 37.8% (fruits) in March. Cypermethrin + dimethoate again recorded the highest (485.0 kg ha?1) nut yield, followed by O. longinoda (431.0 kg ha?1), with water recording the lowest (93.0 kg ha?1) nut yield. CONCLUSION: The results indicate that O. longinoda can be used to control some sucking bugs as effectively as some insecticides. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Mole crickets (Scapteriscus spp.) are severe subterranean pests of turfgrasses, commonly targeted with neurotoxic insecticides. Ideally insecticides used against mole crickets should induce quick knockdown or mortality to minimize damage caused by their tunneling. However, neurophysiological effects of insecticides on mole crickets are mostly unknown. The aims of this study were to investigate neurophysiological and toxic effects of several insecticides on tawny mole cricket (Scapteriscus vicinus Scudder) adults and nymphs, and potential synergy between pyrethroid and neonicotinoid insecticides. Bifenthrin, fipronil, and the combination of bifenthrin + imidacloprid provided the fastest median mortality when injected. The combination of bifenthrin + imidacloprid elicited faster toxicity than either active ingredient alone. Imidacloprid, bifenthrin, and bifenthrin + imidacloprid caused immediate knockdown, whereas fipronil immobilized mole crickets within 1-2 h. Acephate, bifenthrin, fipronil, imidacloprid, and bifenthrin + imidacloprid caused significant neuroexcitation. Bifenthrin + imidacloprid resulted in greater increases of spontaneous neural activity than the additive effects of imidacloprid and bifenthrin alone. Excitatory compounds acting at sodium and chloride channels (bifenthrin and fipronil) were the most toxic against S. vicinus. Combining a sodium channel toxin (bifenthrin) and a synaptic toxin (imidacloprid) led to greater than additive neurophysiological and toxic effects, which to our knowledge provides the first documented evidence of synergistic neurological “potentiation”.  相似文献   

18.
BACKGROUND: The spotted bollworm Earias vittella (Fab.) is a serious pest of cotton and okra in Pakistan. Owing to persistent use of insecticides, this pest has developed resistance, especially to pyrethroids. The present studies aimed at determining the extent of resistance to pyrethroid, organophosphorus and new chemical insecticides in Pakistani populations of E. vittella. RESULTS: Field populations of E. vittella were monitored at Multan, Pakistan, from 1999 to 2007 for their resistance against six pyrethroid, four organophosphorus and six new chemical insecticides using a leaf‐dip bioassay. Of the pyrethroids, resistance was generally low to zeta‐cypermethrin and moderate to high or very high to cypermethrin, deltamethrin, esfenvalerate, bifenthrin and lambda‐cyhalothrin. Resistance to organophosphates chlorpyrifos, profenofos, triazophos and phoxim was recorded at very low to low levels. Among new chemicals, E. vittella had no or a very low resistance to spinosad, emamectin benzoate and methoxyfenozide, a very low to low resistance to abamectin, a very low to moderate resistance to indoxacarb and a moderate resistance to chlorfenapyr. CONCLUSION: The results indicate a lack of cross‐resistance between pyrethroid and organophosphorus insecticides in E. vittella. Rotation of insecticides showing no, very low or low resistance, but belonging to different insecticide classes with unrelated modes of action, may prevent or mitigate insecticide resistance in E. vittella. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Plant essential oils have been recognised as an important natural source of insecticide. This study analysed the chemical constituents and bioactivity of essential oils that were isolated via hydrodistillation from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) against eggs, second instar and adults of Nezara viridula (L.). RESULTS: The major component of oregano was p‐cymene, and, for thyme, thymol. The ovicidal activity was tested by topical application; the essential oil from thyme was more effective. The fumigant activity was evaluated in an enclosed chamber; the LC50 values for oregano were 26.8 and 285.6 µg mL?1 for nymphs and adults respectively; for thyme they were 8.9 µg mL?1 for nymphs and 219.2 µg mL?1 for adults. To evaluate contact activity, a glass vial bioassay was used; the LC50 values for oregano were 1.7 and 169.2 µg cm?2 for nymphs and adults respectively; for thyme they were 3.5 and 48.8 µg cm?2 respectively. The LT50 analyses for contact and fumigant bioassays indicated that thyme was more toxic for nymphs and adults than oregano. Both oils produced repellency on nymphs and adults. CONCLUSION: These results showed that the essential oils from O. vulgare and T. vulgaris could be applicable to the management of N. viridula. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Thrips tabaci Lindeman (Thysanoptera: Thripidae) is a major pest on onion, Allium cepa L., worldwide. In 2010, research was conducted in a commercial onion field in north‐western Italy in order (i) to evaluate the efficacy of different insecticides and of the SAR activator acibenzolar‐S‐methyl, (ii) to correlate thrips infestation levels with bulb size and weight at harvest and (iii) to implement a reliable thrips sampling method. Efficacy of the three active ingredients spinosad, lambda‐cyhalothrin and acibenzolar‐S‐methyl on local thrips populations were also evaluated in laboratory bioassays. RESULTS: During field surveys, the highest and the lowest thrips infestations were observed in plots treated with lambda‐cyhalothrin and with spinosad and acibenzolar‐S‐methyl respectively. The effectiveness of spinosad was also confirmed in laboratory bioassays. At harvest, bulb size and weight did not significantly differ between treatments. A high correlation with visual inspection made plant beating a suitable sampling method for routine practice, enabling a good estimate of thrips infestation. CONCLUSION: Damage caused by thrips is often not severe enough to warrant the frequent pesticide applications the crops receive in north‐western Italy. The use of spinosad and acibenzolar‐S‐methyl is suggested as an alternative to conventional insecticides for the preservation of natural enemies. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号