首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface drip irrigation (SDI) can result in accumulation of soluble salts at or near the soil surface. In the southwestern USA, rainfall is usually inadequate for stand establishment, thus supplemental irrigation is necessary. Use of sprinklers to minimize salt concentrations near the soil surface is an alternative to using SDI for stand establishment. Our objective was to evaluate the effects of germination method (irrigation with SDI or sprinklers), depth of SDI tape (0.18 and 0.25 m), and irrigation water salinity (1.5 and 2.6 dS m−1) on salt and Br distribution after each of two consecutive growing seasons. Treatments consisted of factorial combinations of these three factors. Bromide was used to trace salt accumulation from the drip tape. After season 1, the highest salt concentrations (ECe up to 11 dS m−1) were in the top 3 cm of soil. Below 3 cm, soil EC dropped significantly and remained constant to 1.05 m. Similarly, Br concentrations were highest in the top 3 cm of soil. The mass of salt and Br recovered in the top 3 cm were significantly affected by tape depth, and water EC significantly affected salt mass. Salt present in the soil after season 1 adversely affected crop emergence in season 2, where SDI was used for stand establishment. After season 2, the highest salt and Br concentrations were at about 25 cm depth, probably due to 210 mm of rainfall that occurred near the end of the growing season. There were no significant differences among treatments in the mass of either salt or Br in the top 3 cm or 16 cm of the soil profile after season 2. Timely rainfall, transplanting rather than direct seeding, and changing bed geometry can reduce dependence on sprinklers for stand establishment.  相似文献   

2.
Most trickle irrigation in the world is surface drip yet subsurface drip irrigation (SDI) can substantially improve irrigation water use efficiency (IWUE) by minimizing evaporative loss and maximizing capture of in-season rainfall by the soil profile. However, SDI emitters are placed at depths, and in many soil types sustained wetting fronts are created that lead to hypoxia of the rhizosphere, which is detrimental to effective plant functioning. Oxygation (aerated irrigation water) can ameliorate hypoxia of SDI crops and realize the full benefit of SDI systems. Oxygation effects on yield, WUE and rooting patterns of soybean, chickpeas, and pumpkin in glasshouse and field trials with SDI at different emitter depths (5, 15, 25, and 35 cm) were evaluated. The effect of oxygation was prominent with increasing emitter depths due to the alleviation of hypoxia. The effect of oxygation on yield in the shallow-rooted crop vegetable soybean was greatest (+43%), and moderate on medium (chickpea +11%) and deep-rooted crops (pumpkin +15%). Oxygation invariably increased season-long WUE (WUEsl) for fruit and biomass yield and instantaneous leaf transpiration rate. In general, the beneficial effects of oxygation at greater SDI depth on a heavy clay soil were mediated through greater root activity, as observed by general increase in root weight, root length density, and soil respiration in the trialed species. Our data show increased moisture content at depth with a lower soil oxygen concentration causing hypoxia. Oxygation offsets to a degree the negative effect of deep emitter placement on yield and WUE of SDI crops.  相似文献   

3.
基于地上可视湿润距离的地表滴灌入渗深度估算模式研究   总被引:1,自引:0,他引:1  
地表最大湿润距离R(t)和垂向最大入渗深度H(t)是地表滴灌系统设计的基础,由于垂向最大入渗深度H(t)不易观测,因此如何合理地确定H(t)是滴灌应用中需要解决的关键问题之一。对烟台棕壤土地表点源、线源入渗进行了室内试验研究,提出了基于地表水平湿润距离的地表滴灌垂向湿润锋的估算模式。模拟值和实测值的对比表明,本模式的估算精度较高,入渗过程中的最大相对误差不到5%。  相似文献   

4.
重力式地下滴灌土壤水分运动规律的模拟研究   总被引:5,自引:0,他引:5  
基于非饱和土壤水运动理论,建立了重力式地下滴灌条件下土壤水分运动数学模型,用Galerkin有限元法推导了重力式地下滴灌土壤水分运动有限元方程,并通过试验进行了验证,在此基础上模拟分析了中壤土条件下的滴灌管道埋深、出水孔孔径、供水压力对简易重力式地下滴灌土壤湿润特征和滴孔出水量的影响。结果表明所建模型可以分析地下滴灌土壤水分入渗规律,在中壤土条件下,不同供水压力、滴孔孔径虽对重力式地下滴灌的滴孔出流量有较大影响,但对土壤湿润特征影响微弱,地下滴灌管道埋深对土壤水分湿润特征影响较大,这些结论可为重力式地下滴灌合理的设计及运行提供理论依据。  相似文献   

5.
Soil pits as a simple design aid for subsurface drip irrigation systems   总被引:4,自引:0,他引:4  
A new method for designing subsurface drip irrigation (SDI) systems, referred to as the "soil pit method", is presented in this paper. The new method involves the installation of a trial irrigation system using thin-diameter polyethylene tube emitters. Soil water flow is then monitored by observation of the wetting front (WF) on the face of a soil pit. The soil pit method was applied at two field sites located at Forbes and Warren, New South Wales, Australia. Good agreement was found between the WF observed using the soil pit method and neutron moisture meter measurements of soil water content taken at both of the field sites. Data from the soil pit method was used to derive design parameters for drip irrigation systems at both field sites. These parameters were compared to those based on soil texture. At one site (Forbes), the two methods gave similar design parameters. A comparison of emitter lateral spacings that was conducted at this site confirmed that the lateral spacing suggested by the two methods was appropriate for the site. At the other site (Warren), however, the design parameters derived from the soil pit method were considerably different from those based on soil texture, with inadequate watering and water surfacing problems experienced from the SDI system designed using soil texture. Given the simplicity of the new design method and the minimal equipment and operator expertise that it requires, the soil pit method has potential to be a valuable tool in the design of SDI systems.Communicated by K. Bristow  相似文献   

6.
Improved irrigation water use efficiency is an important component of sustainable agricultural production. Efficient water delivery systems such as subsurface drip irrigation (SDI) can contribute immensely towards improving crop water use efficiency and conserving water. However, critical management considerations such as choice of SDI tube, emitter spacing and installation depth are necessary to attain improved irrigation efficiencies and production benefits. In this study, we evaluated the effects of subsurface drip tape emitter spacing (15, 20 and 30 cm) on yield and quality of sweet onions grown at two locations in South Texas—Weslaco and Los Ebanos. Season-long cumulative crop evapotranspiration (ETc) was 513 mm in Weslaco and 407 mm at Los Ebanos. Total crop water input (rain + irrigation) at Weslaco was roughly equal to ETc (92% ETc) whereas at Los Ebanos, water inputs exceeded ETc by about 35%. Onion yields ranged from 58.5 to 70.3 t ha−1 but were not affected by drip tube emitter spacing. Onion pungency (pyruvic acid development) and soluble solids concentration were also not significantly influenced by treatments. Crop water use efficiency was slightly higher at Weslaco (13.7 kg/m3) than at Los Ebanos (11.7 kg/m3) partly because of differences in total water inputs resulting from differences in irrigation management. The absence of any significant effects of drip tape emitter spacing on onion yield may be due to the fact that irrigation was managed to provide roughly similar irrigation amounts and optimum soil moisture conditions in all treatments.  相似文献   

7.
A 3-year project compared the operation of a subsurface drip irrigation (SDI) and a furrow irrigation system in the presence of shallow saline ground water. We evaluated five types of drip irrigation tubing installed at a depth of 0.4 m with lateral spacings of 1.6 and 2 m on 2.4 ha plots of both cotton and tomato. Approximately 40% of the cotton water requirement and 10% of the tomato water requirement were obtained from shallow (<2 m) saline (5 dS/m) ground water. Yields of the drip-irrigated cotton improved during the 3-year study, while that of the furrow-irrigated cotton remained constant. Tomato yields were greater under drip than under furrow in both the years in which tomatoes were grown. Salt accumulation in the soil profile was managed through rainfall and pre-plant irrigation. Both drip tape and hard hose drip tubing are suitable for use in our subsurface drip system. Maximum shallow ground water use for cotton was obtained when the crop was irrigated only after a leaf water potential (LWP) of −1.4 MPa was reached. Drip irrigation was controlled automatically with a maximum application frequency of twice daily. Furrow irrigation was controlled by the calendar.  相似文献   

8.
地埋滴灌点源入渗土壤水分运动规律实验研究   总被引:2,自引:0,他引:2  
通过室内砂土中进行地埋滴灌的实验,对地埋滴灌在砂土中的适应性进行初步研究,为田间试验布置提供依据。通过分析湿润锋的推移速率、特征点的土壤含水率变化规律,发现湿润锋推移速率先是径向大于垂向,随着灌水时间和灌水量增加,水平方向和垂向的湿润锋和含水率趋于平衡。根据对比滴灌带埋深15和20 cm特征点的含水率变化情况,得出埋深15 cm节水效果更好,更利于作物生长。实验还得出湿润比能作为滴灌灌水参数的指标,由于作物种植的间距和作物根系深度之比基本小于1.0,因此在田间实际灌溉中湿润比应控制在1.0左右。  相似文献   

9.
大田滴灌条件下土壤水分运移规律的试验研究   总被引:4,自引:0,他引:4  
研究了大田滴灌条件下,不同灌水量、不同滴头流量以及不同的土壤剖面容重条件下水分在土壤中的迁移规律。结果表明:在大田滴灌条件下,地表沿滴头土壤湿润锋基本呈圆形分布,在一定灌水量和滴灌流量条件下,土壤垂直湿润锋明显地大于水平湿润锋,且随着灌水量的增加呈线性关系;在同一灌水量下,随着滴头流量的增大,湿润体水平扩散半径(r)和竖直入渗深度(h)也相应变大;在不同灌水量下,湿润体水平和竖直湿润速度随着时间的增大都逐渐变小;随着剖面土壤容重的增加,水平湿润锋的迁移加快,水平湿润锋随时间的变化呈显著的幂函数关系;随着灌水量的增加,不同剖面容重下的土壤水平湿润锋速率的增加逐渐变小,而垂直湿润锋则呈变大的趋势。  相似文献   

10.
黄土高原重力式地下滴灌水分运动模型与分区参数研究   总被引:6,自引:6,他引:0  
建立了重力式地下滴灌条件下的土壤水分运动模型,分析地下滴灌土壤水分入渗规律.对黄土高原不同分区的4种典型土壤、不同灌水技术要素条件下的地下滴灌土壤湿润体形态、滴孔处出流量及土壤土水势进行数值模拟得出:榆林紧砂土土壤导水率较大,向下渗漏过多,不适宜地下滴灌;安塞砂壤土、洛川中壤土、武功重壤土在相同灌水量下,供水压力与滴孔孔径对地下滴灌湿润体形态影响微弱,但对滴孔出流量有较大影响,因此在地下滴灌工程设计时,只需根据田块长度和渗水管损失设计孔径和供水压力,并采用较小供水压力,降低供水水池高度,减小工程量;对武功重壤土,孔径和供水压力较大时地下滴灌滴孔处土壤易饱和板结,宜采用较小的孔径和供水压力.  相似文献   

11.
Subsurface drip system is the latest method of irrigation. The design of subsurface drip system involves consideration of structure and texture of soil, and crop’s root development pattern. A 3-year experiment was conducted on onion (Allium Cepa L., cv. Creole Red) in a sandy loam soil from October to May in 2002–2003, 2003–2004 and 2004–2005 to study the effect of depth of placement of drip lateral and different levels of irrigation on yield. Tests for uniformity of water application through the system were carried out in December of each year. Three different irrigation levels of 60, 80 and 100% of the crop evapotranspiration and six placement depths of the drip laterals (surface (0), 5, 10, 15, 20 and 30 cm) were maintained in the study. Onion yield was significantly affected by the placement depth of the drip lateral. Maximum yield (25.7 t ha−1) was obtained by applying the 60.7 cm of irrigation water and by placing the drip lateral at 10 cm soil depth. Maximum irrigation water use efficiency (IWUE) (0.55 t ha−1 cm−1) was obtained by placing the drip lateral at 10 cm depth. The greater vertical movement of water in the sandy-loam soil took place because of the predominant role of gravity rather than that of the capillary forces. Therefore, placement of drip lateral at shallow depths is recommended in onion crop to get higher yield.  相似文献   

12.
不同灌溉方式对冬小麦生长发育及水分利用效率的影响   总被引:3,自引:4,他引:3  
为了确定山西省晋南地区冬小麦高产高效的节水灌溉模式,采用田间小区试验,研究了微喷灌(MSI)、滴灌(SDI)和传统漫灌(CK)3种灌溉方式对冬小麦不同生育期的土壤水分变化、生长性状、产量和水分利用效率的影响。其中SDI处理和MSI处理生育期灌水3次,分别为越冬期(12月9日)、拔节期(4月1日)、灌浆期(5月20日),每次灌水量为600 m~3/hm~2;CK按当地灌水习惯,于越冬期和拔节期灌水,每次灌水量为2 250 m~3/hm~2。结果表明,各处理越冬期0~100 cm土层土壤含水率没有明显差异,灌浆期0~80 cm土层土壤含水率表现为SDI处理MSI处理CK,MSI处理、SDI处理灌浆期灌水,可满足灌浆期对水分需求,促进籽粒灌浆;与CK相比,SDI处理与MSI处理可以明显增加单株分蘖数和总茎数、促进群体生长,显著增加冬小麦成穗数、穗粒数和千粒质量,因而显著提高了籽粒产量。与CK相比,MSI处理穗粒数、千粒质量分别提高16.54%、5.21%,SDI处理穗粒数、千粒质量分别提高9.10%、11.78%,MSI、SDI处理籽粒产量分别增加了2.79%、3.35%;同时,SDI处理与MSI处理冬小麦生育期的耗水总量分别减少43.88%和41.64%,水分利用效率分别提高了83.15%和77.09%。因此,在山西临汾盆地采用微喷与滴灌可以取得明显的节水高产效果。  相似文献   

13.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

14.
通过室内试验,分析了4种土壤初始含水率对地下滴灌线源入渗土壤水分运动规律的影响,结果表明,随着初始含水率的增大,湿润锋向下运移的速度变大,向上和水平方向运移的速度均减小,且滴头下方的土壤含水率相对较高;水平方向在滴头左右相同位置处的土壤含水率基本相同,呈左右对称分布。在相同灌水量情况下,初始含水率越大,湿润锋向上运移的距离越小,向下运移的距离越大。  相似文献   

15.
多点源滴灌条件下土壤水分运移模拟试验研究   总被引:3,自引:0,他引:3  
为了指导密植作物的滴灌系统合理设计,通过室内物理试验模拟了多点源滴灌条件下土壤水分运移过程,重点研究了不同滴头流量下交汇湿润体内的土壤水分时空动态分布规律.多点源滴灌条件下土壤水分运动遵循先点源入渗、再湿润锋交汇和最后形成湿润带的规律.灌水结束时,土壤水分分布呈现湿润体上部复杂、下部相对简单的特征.湿润体上部,在滴头下方存在土壤含水率相对较高的区域,2个滴头之间近地表处存在土壤含水率相对较低的区域;湿润体下部同一深度土层上的含水率有趋于一致的趋势.灌水结束后,由于土壤水分再分布,同一深度土层上含水率差异逐渐减小.灌水量相同条件下,灌水结束时,滴头流量小的入渗深度较大,湿润体内土壤平均含水率较低;灌水结束后,受土壤水分再分配的作用,不同滴头流量下入渗深度的差异较灌水结束时有所减小.  相似文献   

16.
Simulation of point source wetting pattern of subsurface drip irrigation   总被引:2,自引:0,他引:2  
Laboratory experiments and calculations were carried out to analyze the effect of subsurface drip irrigation (SDI) design features on soil wetting patterns for a point source. Experimental and simulated soil wetting patterns, using the SWMS-2D (simulating water movement and solute transport in two-dimensional) Galerkin finite element model, were investigated to maximize the efficiency of water saving. The analysis addressed the influence of water pressure head, back pressure and emitter diameter on wetting patterns. Predictions of water content distributions in the soils made with SWMS-2D were found to be in good agreement with the observed data. Results showed that this model provides confidence that model predictions are not too sensitive to back-pressure effects.  相似文献   

17.
线源滴灌土壤湿润均匀性的影响因素试验研究   总被引:3,自引:1,他引:2  
线源滴灌设计中,滴灌管出流均匀性与土壤湿润均匀性有本质不同,前者仅仅是后者必要的基础,但是要保证线源滴灌土壤湿润均匀性,还需要考虑滴头间距、滴头流量、滴水量和土壤质地的差别。对影响线源滴灌土壤湿润均匀性的主要因素进行了试验研究。试验中所用土壤为沙土和沙壤土;滴头间距为30 cm和50 cm;滴头流量为0.3~4 L/h;滴水量为10~25 L不等。试验表明,沿滴灌管方向的土壤湿润均匀度取决于湿润区的交汇程度,而湿润区的交汇程度又取决于土壤湿润区水平运移宽度和滴头间距。沙土沿滴灌管方向的土壤湿润均匀度随滴水量的增大而显著增大,沙壤土的相应指标则随滴头流量的增大而增大。土壤湿润均匀度随滴头间距的增大而减小。线源滴灌设计时,粘粒含量较少的土壤应该有一定的设计湿润深度和较小的滴头间距才能保证其湿润均匀度满足设计要求。研究结论对完善滴灌技术设计理论有帮助。  相似文献   

18.
Innovative irrigation solutions have to face water scarcity problems affecting the Mediterranean countries. Generally, surface (DI) or subsurface drip irrigation systems (SDI) have the ability to increase water productivity (WP). But the question about their possible utilisation for crops such as corn would merit to be analysed using an appropriate economic tool. The latter would be necessary based on the utilisation of a modelling approach to identify the optimal irrigation strategy associating a water amount with a crop yield (Yc). In this perspective, a possible utilisation of the operative 1D crop model PILOTE for simulating actual evapotranspiration (AET) and yield under a 2D soil water transfer process characterizing DI and SDI was analysed. In this study, limited to a loamy soil cultivated with corn, the pertinence of the root water uptake model used in the numerical code Hydrus-2D for AET estimations of actual evapotranspiration (AET) under water stress conditions is discussed throughout the Yc = F(AET) relationship established by PILOTE on the basis of validated simulations. The conclusions of this work are (i): with slight adaptations, PILOTE can provide reliable WP estimations associated to irrigation strategies under DI and SDI, (ii): the current Hydrus-2D version used in this study underestimates AET, compared with PILOTE, in a range varying from 7% under moderate water stress conditions to 14% under severe ones, (iii): A lateral spacing of 1.6 m for the irrigation of corn with a SDI system is an appropriate solution on a loamy soil under a Mediterranean climate.A local Yc = F(AET) relationship associated with a Hydrus-2D version taking into account the compensating root uptake process could result in an interesting tool to help identify the optimal irrigation system design under different soil conditions.  相似文献   

19.
微孔陶瓷渗灌与地下滴灌土壤水分运移特性对比   总被引:4,自引:0,他引:4  
以微孔陶瓷灌水器为研究对象,在0 m工作水头下进行土壤水分运移特性试验,并以10 m额定工作水头下工作的地下滴灌灌水器作为对照。通过对比分析2种灌溉方式下累计入渗量、流量、湿润体特征和土壤含水率变化,结果表明:相同灌溉时间下微孔陶瓷渗灌的累计入渗量、湿润锋运移距离、湿润体截面面积均明显小于地下滴灌。微孔陶瓷渗灌的流量随时间逐渐减小,直至接近于零;试验后期,微孔陶瓷渗灌湿润体内整体土壤含水率变化较小;由于微孔陶瓷渗灌为无压连续灌溉,因此在其工作过程中可为作物提供一个恒定的水分环境。而地下滴灌的流量则会维持稳定,使得土壤含水率一直增大,停止灌溉后由于土壤水分再分布而减小。地下滴灌为被动恒压灌溉,因此其灌溉条件下作物生长的水分环境处于干湿交替的循环变化状态。  相似文献   

20.
为了探讨再生水地下滴灌条件下土壤脲酶活性和硝态氮的关系,通过2a再生水地下滴灌试验,研究了滴灌带埋深和灌水量对玉米生育期0~50cm深度土壤脲酶活性和硝态氮分布的影响。灌水量设置灌溉需水量的70%、100%和130%3个水平,滴灌带埋深设置0、15和30cm 3个水平。结果表明,再生水地下滴灌提高了0~50cm脲酶活性。灌水量和滴灌带埋深均对土壤脲酶活性和硝态氮含量产生了显著影响,硝态氮随灌水量和滴灌带埋深的增大运移深度增加,0~10cm深度脲酶活性以70%灌溉需水量和埋深0cm较高,10~50cm深度脲酶活性以130%灌溉需水量和埋深30cm较高。相关分析表明,硝态氮含量和脲酶活性在玉米生育期内由极显著正相关向负相关转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号