首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为探索土壤温度时间动态特征与导温率及土壤深度之间的关系,以西南亚高山森林表层土壤温度为研究对象,分析了2009-2010年每月28日或29日不同土层土壤温度的日变化特征,并对不同月份不同深度温度日变化建立数学模型并进行数据拟合.结果表明,亚高山森林0~40 cm土壤温度日较差随着土壤深度的增加逐渐减小,其中0~20 cm土壤温度日较差明显,20~40 cm的深层土壤温度日较差很小;40 cm深度土壤温度日进程基本上处于稳定状态,在冬季30 cm以下深度土壤温度都基本上处于稳定状态;随着深度的增加,土壤温度最高值和最低值出现滞后时间延长的趋势,而且同一土壤深度滞后时间在不同月份差异很大;非冻融季节土壤温度日变化用土壤温波方程来拟合是有效的;在低温季节(9月至次年3月),10 cm以下土壤剖面温度用土壤温波方程拟合误差较大,显示土壤冻结对土壤热量传输影响显著,温波方程不适于拟合冻融期土壤温度日动态.  相似文献   

2.
春小麦覆膜栽培与露地栽培土壤温度差异的变化特点   总被引:1,自引:0,他引:1  
小麦覆膜栽培增温效果明显,比露地栽培小麦 0 cm日增温1.75℃、5 cm日增温2.93℃、 10cm日增温1.48℃、15cm日增温1.06℃、20 cm日增温0.93℃.地膜小麦和露地小麦土壤温度随土层深度的增加而降低,各土层深度温差降幅大小依次为5 cm>10 cm>15 cm>20 cm .地膜小麦土壤温度日变化0~20 cm最低温度在8:00,最高温度0~10 cm出现在14:00、15 ~20 cm土壤最高温度出现在20:00.地膜小麦土壤温度随生育期后延而呈增加趋势.  相似文献   

3.
 【目的】针对以往研究在土壤温度观测和不同耕作条件下土壤温度效应规律上的不足,研究了华北平原不同耕作方式冬小麦田土壤温度日变化及其对气温的响应特征。【方法】试验于河北省栾城县设置翻耕、旋耕和秸秆覆盖免耕处理,采用热脉冲-时域反射技术,连续监测2004-2005年冬小麦生育期土壤温度和气温。【结果】各层次土壤温度日变化随气温呈正弦函数变化;土壤温度日变化随土壤深度呈“锥形”;2.5~80 cm土壤深度每增加5 cm,土壤温度随气温的变化滞后1.2 h左右;不同耕作方式土壤日最高和最低温度均具有显著差异,秸秆覆盖度是其主要影响因素之一;免耕在冬小麦活动期,显著降低了2.5 cm土层土壤最高温度0.66~4.85℃,而在越冬期提高最低温度0.64~0.87℃;冬小麦生长前期(出苗-拔节)免耕较其他处理显著降低了2.5 cm土层土壤温度日变化幅度,其中较翻耕降低0.65~5.21℃,较旋耕降低0.48~3.89℃。【结论】不同耕作方式各层次土壤温度均极显著响应气温变化;耕作方式主要影响土壤温度的变化幅度而且主要表现在冬小麦生长前期;免耕在冬小麦活动期表现为降温效应,究其原因是由于较大程度地降低高温而较小程度地提高低温;越冬期表现增温效应是由于显著提高了各个时刻的土壤温度。  相似文献   

4.
阿尔泰山作为干旱区典型的山地系统,其土壤温度的日、月、季节和年际动态及其影响因素研究,是深入理解干旱区山地森林生态系统能量循环过程的关键所在。基于阿尔泰山森林生态站2014年11月-2019年7月的气象因子和土壤温度数据,应用相关分析、回归分析和BP人工神经网络分析了阿尔泰山5、10、20 cm和30 cm深度土壤温度的动态变化及其对气象因子的响应,同时,应用多元线性回归和BP人工神经网络对土壤的温度进行了模拟。结果表明:1)近5 a各层土壤温度月均值年际变化一致,最低最高温度和日较差最大值均出现在20 cm,仅30 cm土壤温度的月变化出现自表层至深层滞后现象,年内月较差最大值出现在30 cm深度;各土壤层温度在春夏秋季变化较大,冬季变化较小;2)空气温度、气压和太阳辐射等与土壤温度的相关性达到极显著水平,其中与空气温度的相关性最强;3)回归模型和BP人工神经网络对20 cm土壤层的模拟结果最好,且BP人工神经网络模型的性能总体上优于回归模型。  相似文献   

5.
利用2012~2013年大通县塔尔镇日光温室内外气象观测资料和县气象局人工观测资料,分析了该县晴、多云、阴等不同天气类型下日光温室内不同深度土壤温度变化规律。结果表明,在日光温室内,土壤温度日变化呈正弦曲线,变化幅度晴天多云天阴天,表层土壤温度变幅最大,20cm最小;月平均变化呈波峰波谷型,最大值出现在7月,最小值在12月,随着深度增加,平均年较差逐渐减小;晴天、多云、阴天不同深度土壤温度平均日较差分别为9.6、8.3、6.1℃;日垂直变化仅在14时随着深度增加逐渐下降;除晴天室内最高温度外,其余温度要素与土壤温度之间存在极显著正相关关系;建立的日光温室内10cm最低温度预报方程和地表最低温度预报模型,可以在专业气象服务中应用。  相似文献   

6.
为了揭示江苏丘陵区栎林内的小气候变化规律,利用土壤温度和湿度传感器测量不同层次土壤温度和水分,并对其时空变化进行分析.结果表明,从土壤温度日变化来看,4个层次土壤日平均温度冬季为40 cm>10 cm>0 cm>5 cm、春季为0 cm>5 cm>10 cm>40 cm、夏秋季为0 cm>40 cm>10 cm>5 cm;从土壤温度月变化来看,4个层次土壤温度呈倒U型变化,各层土壤月平均温度差异并不显著;从土壤温度季节变化来看,秋、冬两季随着土壤深度的增加,温度总体呈现上升的趋势,以冬季最为明显,而春、夏两季规律性不是很明显;从日、月、季节土壤温度变化幅度来看,温度变化幅度随着土壤深度的增加而减小,说明土壤越深,温度越稳定.从日、月、季节土壤水分来看,各层土壤水分变化都较稳定、变幅很小,各层土壤含水量随着土壤深度的增加而增加,水分变化的幅度随着土壤深度的增加而降低.  相似文献   

7.
日光温室土壤温度变化特征和预报模型研究   总被引:1,自引:0,他引:1  
贾红  徐为根  彭明艳  孙磊 《安徽农业科学》2011,(11):6471-6473,6482
[目的]研究日光温室内土壤温度变化规律及其预报模型。[方法]利用徐州地区标准日光温室内外气温和温室内多层次土壤温度观测资料,分析了温室内各层土壤温度的年变化和日变化,并对温室内土壤温度的预报模型进行了模拟和检验。[结果]温室内土壤温度年变化和日变化均呈单峰曲线,下层温度变化振幅小于上层。温室内各层土壤温度(最高值、最低值和平均值)与当日温室外同类型气温的相关性最为密切。以当日和前一日温室外日平均气温、日最高气温、日最低气温为预报因子,建立了温室内同类型不同层次土壤温度预报模型。温室内各层日平均温度的模拟效果优于对应层的最高温度的模拟效果,劣于对应层日最低温度的模拟效果;下层土壤日最高温度和日平均温度的模拟效果优于上层;实测土壤温度在15~30℃模拟效果较好,其他温度段模拟值较实测值偏低。[结论]该研究为日光温室内植物的生长发育环境提供理论依据。  相似文献   

8.
2004-2008年丽水市土壤温度的微气象特征   总被引:1,自引:0,他引:1  
利用2004-2008年丽水市国家气象观测站0~320cm共9层土壤温度资料,分析该地土壤温度时空分布的微气象特征及其影响机制。结果表明,土壤温度的日变化和年变化特征相似,都呈单峰分布。土壤温度随土壤深度的增加变化幅度减小,峰值出现时间呈滞后,位相变化明显,而深层土壤相对稳定少变。土壤温度随深度的变化差异显著,主要表现为2种极限型和2种过渡型。不同天气条件下土壤温度的变化强度为多云雨天晴天阴天。降水对土壤温度的影响先增大后减小。日照与土壤温度变化成正比,风速和蒸发与土壤温度变化成反比。  相似文献   

9.
目的探究不同大小林隙地表温度和浅层土壤温度的动态变化特征,为阔叶红松混交林苗木更新、生物多样性维持及生态环境的恢复提供理论依据。方法以小兴安岭阔叶红松林中林隙和小林隙为研究对象,采用网格法和十字样线法分别布设地表温度表和土壤温度表观测样点,在植物生长季测定了两个林隙的地表温度、地表最低和地表最高温度以及浅层(5、10、15和20 cm)土壤温度,采用经典统计学与地统计学对地表温度和土壤温度进行测量及时空异质性的分析。结果(1)地表温度和地表最高温度在生长季内(6—9月)的月变化均表现为先升后降的单峰型曲线分布,且7月达到最大值。地表温度的升温速率高于降温速率,升温幅度大,降温幅度小。(2)不同样地间地面最高温度与地面温度的变化相同,生长季内(6—9月)地面温度变化为:中林隙 > 小林隙 > 郁闭林分,最低温度变化为:中林隙 < 小林隙 < 郁闭林分。(3)各月份林隙土壤温度空间变异程度不同,6月和9月变异程度较7月和8月有所增加;随着土层深度增加,土壤温度的变异减小。(4)林隙日均地表温度和日均土壤温度均较郁闭林分高,且林隙土壤温度的最大值区域随时间出现动态变化。林隙中心地表温度和土壤温度极其日较差均高于郁闭林分。中、小林隙各土层温度差并无明显差异。(5)7月和8月土壤温度均呈较弱变异,6月和9月部分呈中等变异。结论地表温度和浅层土壤温度在不同月份均呈现出不同的变化趋势,生长季(6—9月)的地表温度与土壤温度恰恰是苗木更新及种子萌发的关键条件之一,本文旨在对群落演替和种群动态研究提供基础性数据。   相似文献   

10.
以3年生克瑞森地下滴灌葡萄园为研究对象,分析土壤垂直方向上20、40、60、80 cm处的土壤温度日变化、土壤温度在葡萄不同生育期的变化及年变化特征。结果表明,地下滴灌葡萄园各深度的土壤温度日变化趋势基本相同,近地表处土壤温度日变化幅度相对较大,深层土壤温度日变化趋势平缓;以04:00、08:00、14:00、22:00代表土壤温度变化特征时刻的各深度土壤温度,在葡萄整个生育期内变化趋势均匀,萌芽期开始上升,果实生长期土壤温度达到最大值,后开始下降;葡萄园土壤温度在年变化过程中先上升后下降,7月达到最大值,土壤温度变化曲线随土壤深度的增加振幅减小;土壤深度40 cm处的年平均温度为13.14℃,高于其他深度土壤年平均温度;各深度土壤温度与气温有明显的二次函数关系,并随土层深度的变化显著性逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号