首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditional expression of harpinPsscauses yeast cell death that shares features of cell death pathway with harpinPss-mediated plant hypersensitive response (HR).Pseudomonas syringae pv.syringae 61 hrp Z gene encodes harpinPss, a 34.7 kD extracellular protein that elicits a hypersensitive response (HR) in plants. Conditional expression of either full-length or truncated hrp Z sequences under the GAL1 promoter caused cell death in Saccharomyces cerevisiae Y187. Plating of pYEUT- hrp Z transformants on a medium containing galactose resulted in complete inhibition of colony formation, whereas their growth on a glucose-based medium was unaffected. Western blot analysis confirmed the expression of harpinPssin yeast cells transformed with pYEUT- hrp Z and grown in galactose-containing medium. A time-dependent decline in the percentage of trypan blue-excluding cells in cultures of pYEUT- hrp Z transformants was observed when cultured on galactose-containing medium. Similarly, the number of viable cells reduced to about 50% within 6 h. There were similarities in the harpinPss-mediated cell death in plants and yeast cell death (YCD). Galactose-induced cell death in pYEUT-hrp Z transformants of S. cerevisiae Y187 was suppressed by a protein kinase inhibitor K252a (10 μ M). The viability of pYEUT- hrp Z transformants was prolonged in the presence of 100 U ml−1catalase suggesting a role for the oxidative burst in YCD that was further supported by the flow cytometric patterns of propidium iodide uptake by yeast cells. Overall, it appears that yeast provides a useful model system to understand the molecular mechanism of harpinPss-mediated cell death.  相似文献   

2.
A collection of Pseudomonas syringae and viridiflava isolates was established between 1993 and 2002 from diseased organs sampled from 36 pear, plum and cherry orchards in Belgium. Among the 356 isolates investigated in this study, phytotoxin, siderophore and classical microbiology tests, as well as the genetical methods REP-, ERIC- and BOX- (collectively, rep-) and IS50-PCR, enabled identification to be made of 280 isolates as P. syringae pv. syringae (Pss), 41 isolates as P. syringae pv. morsprunorum (Psm) race 1, 12 isolates as Psm race 2, three isolates as P. viridiflava and 20 isolates as unclassified P. syringae. The rep-PCR methods, particularly BOX-PCR, proved to be useful for identifying the Psm race 1 and Psm race 2 isolates. The latter race was frequent on sour cherry in Belgium. Combined genetic results confirmed homogeneities in the pvs avii, and morsprunorum race 1 and race 2 and high diversity in the pv. syringae. In the pv. syringae, homogeneous genetic groups consistently found on the same hosts (pear, cherry or plum) were observed. Pathogenicity on lilac was sometimes variable among Pss isolates from the same genetic group; also, some Psm race 2 and unclassified P. syringae isolates were pathogenic to lilac. In the BOX analyses, four patterns included 100% of the toxic lipodepsipeptide (TLP)-producing Pss isolates pathogenic to lilac. Many TLP-producing Pss isolates non-pathogenic to lilac and the TLP-non-producing Pss isolates were classified differently. Pseudomonas syringae isolates that differed from known fruit pathogens were observed in pear, sour cherry and plum orchards in Belgium.  相似文献   

3.
A survey of wild cherry (Prunus avium) woodland plantations and nurseries was carried out in 2000/01. Trees with symptoms of bacterial canker were found in 20 of the 24 plantations visited and in three of seven nurseries. Fifty-four Pseudomonas syringae isolates from wild cherry together with 22 representative isolates from sweet cherry and 13 isolates from other Prunus spp., pear and lilac were characterised by physiological, biochemical, serological and pathogenicity tests. Isolates from wild cherry were predominantly P. syringae pv. syringae (Pss), but P. syringae pv. morsprunorum (Psm) races 1 and 2 were also found. Physiological and biochemical tests discriminated Psm races 1 and 2 from other P. syringae isolates. Agglutination and indirect-enzyme-linked immunosorbent assay tests with three different antisera showed that Psm race 1 and race 2 were very uniform and indicated high variability amongst other P. syringae isolates. However, pathogenic Pss isolates could not be distinguished from non-pathogenic isolates of P. syringae on the basis of physiological, biochemical or serological tests. Pathogenicity tests on rooted lilac plants and on micropropagated plantlets of lilac and two wild cherry clones differentiated Pss and Psm isolates and demonstrated a range of aggressiveness amongst Pss isolates. Serological tests could be used as an alternative to the classical physiological and biochemical tests to increase the speed of detection and discrimination of isolates, but pathogenicity tests are still necessary to discriminate the pathogenic Pss isolates.  相似文献   

4.
A rapid detection method based on PCR amplification of Pseudomonas syringae pv. tomato chromosomal sequences was developed. Primer design was based on the P. syringae DC3000 hrpZPst gene, which maps on a pathogenicity-associated operon of the hrp/hrc pathogenicity island.A 532 bp product corresponding to an internal fragment of hrpZPst was amplified from 50 isolates of P. syringae pv. tomato belonging to a geographically representative collection. The amplification product was also obtained from three coronatine-deficient strains of P. syringae pv. tomato.On the other hand, PCR did not produce any such products from 100 pathogenic and symbiotic bacterial strains of the genera Pseudomonas, Xanthomonas, Erwinia, and Rhizobium and 75 unidentified bacterial saprophytes isolated from tomato plants. The method was tested using leaf and fruit spots from naturally-infected tomato plants and asymptomatic nursery plants and artificially contaminated tomato seeds. The results confirmed the high specificity observed using pure cultures.  相似文献   

5.
To elucidate the role of harpins produced by Pseudomonas syringae, the corresponding hrpZ gene was isolated from P. s. pv. tabaci. The sequence information revealed that this gene carries a serious mutation with 326 bp lacking in the central region and potentially encodes only 140 N-terminal amino acids because of a frame shift. The investigation of biological properties using recombinant harpin indicated harpinpsta was incapable of inducing HR in both host and nonhost plants. Based on an immunoblot analysis to detect harpin from P. s. pathovars in hrp-inducing medium, the truncated harpinpsta was neither expressed nor secreted into the culture medium. These results suggest that harpin is not the sole determinant of the host-parasite specificity in P. s. pv. tabaci. Received 10 August 2000/ Accepted in revised form 21 December 2000  相似文献   

6.
Of thirty fluorescent Pseudomonas isolates originating from symptomatic tissues of sweet (Prunus avium) and sour cherry (Prunus cerasus), plum (Prunus domestica), peach (Prunus persica) and apricot (Prunus armeniaca), 23 were identified as P. syringae using LOPAT tests. Further characterization of those isolates by GATTa and L-lactate utilization tests showed that 10 of them belonged to race 1, six to race 2 of P. syringae pv. morsprunorum (Psm) and six other isolates were identified as pathovar syringae (Pss). One isolate (791) was determined as atypical. Phenotypic determination and genetic analysis of studied isolates for toxin production revealed that isolates of Pss produced syringomycin, 3 Psm race 1 produced coronatine and 6 Psm race 2 produced yersiniabactin. Genetic diversity of all isolates was evaluated with the PCR melting profile (PCR MP) method. A dendrogram constructed with PCR MP patterns showed positive correlation with phenotypically distinguished pathovars. Isolates of Psm races 1 and 2 formed distinct, tight clusters, whereas Pss isolates were more heterogeneous. Isolate 791 was placed within Pss isolates. Bacteria identified as Pss caused more severe symptoms on immature cherry fruits compared to Psm, which corresponded to determined pathovars and races.  相似文献   

7.
A newly discovered bacterial species, Pseudomonas floridensis, has emerged as a pathogen of tomato in Florida. This study compares the virulence and other attributes of P. floridensis to Pseudomonas syringae pv. tomato, which causes bacterial speck disease of tomato. Pseudomonas floridensis reached lower population levels in leaves of tomato as compared to the P. syringae pv. tomato strains DC3000 and NYT1. Analysis of the genome sequence of the P. floridensis type strain GEV388 revealed that it has just nine type III effectors including AvrPtoBGEV388, which is 66% identical to AvrPtoB in DC3000. Five of these effectors have been previously reported to be members of a ‘minimal effector repertoire’ required for full DC3000 virulence on Nicotiana benthamiana; however, GEV388 grew poorly on leaves of this plant species compared to the DC3000 minimal effector strain. The tomato Pto gene recognizes AvrPtoB in race 0 P. syringae pv. tomato strains, thereby conferring resistance to bacterial speck disease. Pto was also found to confer resistance to P. floridensis, indicating this gene will be useful in the protection of tomato against this newly emerged pathogen.  相似文献   

8.
9.
Infection of Phaseolus vulgaris cultivars Red Mexican and Tendergreen with Pseudomonas fluorescens, P. syringae pv. coronafaciens, P.s. pv. phaseolicola races 1 and 3, and a mutant of race 3 (race 3 M1) with altered cultivar specific virulence was examined. In addition to qualitative observations of the development of colonies of bacteria and the responses in adjacent plant cells, quantitative analyses were made of the numbers of bacteria within sections of colonies, contact between bacteria and the plant cell wall, the accumulation of fibrillar acidic polysaccharides (which stained with ruthenium red) around bacteria, convolution of the plant cell membrane adjacent to bacteria, deposition of paramural papillae, rupture of the tonoplast and the occurrence of cytoplasmic disorganization. The presence at infection sites of material staining with the periodic acid, thiocarbohydrazide silver proteinate (PATAg) procedure to localize vicinal glycols was also quantified.Cells of P. fluorescens failed to multiply in the plant and seemed tightly bound at junctions between mesophyll cells. The pathovars of P. syringae all multiplied at similar rates during the first 12 h after inoculation and were not closely attached to the plant cell wall. Fibrillar, ruthenium red staining material, considered to be bacterial extracellular polysaccharides, accumulated around cells of the pathovars of P. syringae irrespective of the compatibility of their interaction with cultivars. Amorphous PATAg positive deposits formed around cells of the saprophyte and as condensed aggregates in colonies of P. syringae pathovars in tissue undergoing the hypersensitive reaction (HR) but not during compatible interactions. The PATAg positive material may be involved in the elicitation of responses by plants during the HR. The first response of plant cells to adjacent bacteria was the localized convolution of the plasma membrane; this response was neither race nor species specific. Deposition of paramural papillae was also found to be a non-specific response occurring during compatible and incompatible interactions. Some components of papillae were PATAg positive. Plasmolytic studies demonstrated that, during the HR, irreversible damage to the plasma membrane first occurred 5 and 8 h after initial convolution of the membrane following inoculation of cv. Tendergreen with P.s. pv. coronafaciens and P.s. pv. phaseolicola race 3 respectively. Tonoplast dysfunction appeared to follow irreversible damage to the plasma membrane and preceded loss of compartmentation and cytoplasmic collapse. The ultrastructural study showed that many plant responses were non-specific and therefore could be separated from irreversible damage to the plasma membrane which was the irrevocable event during the HR.  相似文献   

10.
Bacterial speck caused byPseudomonas syringae pv.tomato is an emerging disease of tomato in Tanzania. Following reports of outbreaks of the disease in many locations in Tanzania, 56 isolates ofP. syringae pv.tomato were collected from four tomato- producing areas and characterized using pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All theP. syringae pv.tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya’) seedlings. Metabolic fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient in the identification of the isolates to the species level, as 53 of the 56 (94.6%) isolates ofP. syringae pv.tomato were identified asPseudomonas syringae. However, only 23 isolates out of the 56 (41.1%) were identified asPseudomonas syringae pv.tomato. The results of this work indicate the existence ofP. syringae pv.tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in theirhrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use resistant tomato varieties as part of an effective integrated bacterial speck management plan. http://www.phytoparasitica.org posting August 8, 2008.  相似文献   

11.
Bacterial canker is one of the most important diseases of cherry (Prunus avium). This disease can be caused by two pathovars of Pseudomonas syringae: pv. morsprunorum and pv. syringae. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) was investigated as a method to distinguish pathovars, races and isolates of P. syringae from sweet and wild cherry. After amplification of total genomic DNA from 87 isolates using the REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX primers, followed by agarose gel electrophoresis, groups of isolates showed specific patterns of PCR products. Pseudomonas syringae pv. syringae isolates were highly variable. The differences amongst the fingerprints of P. syringae pv. morsprunorum race 1 isolates were small. The patterns of P. syringae pv. morsprunorum race 2 isolates were also very uniform, with one exception, and distinct from the race 1 isolates. rep-PCR is a rapid and simple method to identify isolates of the two races of P. syringae pv. morsprunorum; this method can also assist in the identification of P. syringae pv. syringae isolates, although it cannot replace inoculation on susceptible hosts such as cherry and lilac.  相似文献   

12.
The effects of temperature, free moisture duration and inoculum concentration on infection caused byPseudomonas syringae pv.syringae (Pss), on sweet cherry (Prunus avium) were investigated. Epiphytic populations ofPss are an important source of inoculum for bacterial canker and it has been demonstrated that a cyclic pattern exists during the year, from undetectable during the warm and dry periods to large populations following cool and wet periods. The effects of temperature and inoculum concentration on the infection caused byPss on immature fruits and 1-yr-old twigs were significant (P<0.001). Fruit and twig infection increased linearly in proportion to the logarithm ofPss when bacterial concentrations were higher than 103 cfu ml−1 and temperatures were between 5 and 20°C. Regardless of the inoculum concentration and the free moisture duration, fruit and twig infection was either absent or low at 5°C but it increased linearly as temperature increased from 5 to 20°C. Growth ratein vitro was very slow (0.03–0.04 cfu h−1) at 5°C and fast (0.21–0.23 cfu h−1) at 20°C. Therefore, it is possible that multiplication of the epiphytic populations may be significantly reduced in the field with air temperatures below 5°C. A significant (P<0.001) effect of free moisture was obtained only when a low inoculum concentration (103 cfu ml−1) was used, and a significant linear response between free moisture and disease incidence was obtained only at 10°C. An apparent threshold population ofPss higher than 103 cfu ml−1 was needed to infect immature fruits and 1-yr-old twigs of sweet cherry. http://www.phytoparasitica.org posting July 10, 2002.  相似文献   

13.
Reactions to strains of the bean halo-blight pathogen Pseudomonas syringae pv. phaseolicola (Pph) strain 1448A and the Arabidopsis and tomato pathogen P.s. pv. tomato (Pst) strain DC3000 were examined by transmission electron microscopy. Wild-type and hrpL mutant strains of Pph failed to multiply in the accession Columbia (Col)-5, but did not cause a hypersensitive reaction (HR). Symptomless non-host resistance to 1448A and the hrpL mutant was associated with the progressive alteration of the plant cell wall adjacent to bacteria, following the accumulation of membrane bound vesicles within the cytoplasm at reaction sites. Large papillae containing callose accumulated within challenged plant cells. Papillae also formed in the pmr41 mutant of Col-0 which lacks an inducible callose synthase but immunocytochemical labelling demonstrated that they contained very little β-1, 3 glucan. Some papillae formed in Col-5 in response to the virulent pathogen DC3000, but they dispersed during cell collapse and lesion formation. Transconjugants of Pph expressing the avirulence genes avrPpiA and avrPphB matching the RPM1 and RPS5 resistance genes, caused rapid and slow HR development, respectively. Although corpse morphology was observed our observations suggest that in Arabidopsis, plant cell death during the HR is programmed but represents a variant of necrosis rather than apoptosis. Cerium chloride staining revealed the accumulation of H2O2 at reaction sites. The strongest H2O2 response was found during the HR activated by avrPpiA but localised generation of peroxide was also found at sites of papilla deposition next to 1448A or the hrpL mutant. Accumulation of H2O2 during the HR, but not during wall alterations, was strongly suppressed by inhibition of NADPH oxidase. The differential effect of the inhibitor suggests an alternative source of H2O2 to modify the plant wall. Extension of peroxide-driven cross-linking reactions to bacterial cell walls may contribute to the restriction of bacterial multiplication. The lowest level of H2O2 occurred during the compatible reaction to DC3000. Characterisation of the cellular co-ordination of basal (non-host) resistance has revealed several potential targets for bacterial effector proteins.  相似文献   

14.
Phytohormones are involved in the regulation of plant responses to biotic stress. How a limited number of hormones differentially regulate defence responses and influence the outcome of plant–biotic interactions is not fully understood. In recent years, cytokinin (CK) was shown to induce plant resistance against several pathogens. In the present study, we investigated the effect of CK in inducing tomato resistance against the hemibiotrophic pathogenic bacteria Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas syringae pv. tomato (Pst). We demonstrate that CK enhances tomato resistance to Xcv and Pst through a process that relies on salicylic acid and ethylene signalling. CK did not directly affect the growth or biofilm formation ability of these pathogens in vitro. Overall, our work provides insight into the underlying mechanisms of CK-induced immune responses against bacterial pathogens in tomato.  相似文献   

15.
We have previously shown that flagellin of Pseudomonas syringae pv. tabaci is an elicitor that induces a hypersensitive reaction (HR) in nonhost tomato cells. Flagellin is the major HR elicitor produced by this pathogen, as shown by the inability of a flagellin-defective mutant, ΔfliC, to induce HR. Also, a ΔfliD mutant that secretes large amounts of monomer flagellins induces a strong HR in tomato. In this study, the possible involvement of an Hrp type III secretion system (TTSS) in flagellin-induced HR was investigated using flagella-defective mutants or Hrp TTSS-defective mutants. The hrcC gene encodes HrcC protein, which is required for Hrp pilus formation in the outer membrane. An hrcC mutation, introduced into the wild-type, ΔfliC, and ΔfliD mutants of P. syringae pv. tabaci did not affect swimming motility or flagellin secretion, whereas all ΔhrcC, ΔfliC, and ΔfliD mutants lost the ability to cause disease on host tobacco leaves. However, the ΔhrcC mutant and the ΔfliDhrcC double mutant were still able to induce HR cell death, expression of one of the defense-related genes hsr203J, and the generation of hydrogen peroxide in nonhost tomato cells. Thus, flagellin is required for both pathogenicity in host tobacco and HR in nonhost tomato. On the other hand, hrp TTSS is necessary for pathogenicity on host tobacco but is not indispensable to induce HR in nonhost tomato. These results clearly show that flagellin-induced HR is hrp-independent in tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB049570  相似文献   

16.
Inoculation of tomato seeds with the plant growth-promoting bacterium Azospirillum brasilense, or spraying tomato foliage with A. brasilense, streptomycin sulfate, or commercial copper bactericides, separately, before or after inoculation with Pseudomonas syringae pv. tomato, the casual agent of bacterial speck of tomato, had no lasting effect on disease severity or on plant height and dry weight. Seed inoculation with A. brasilense combined with a single streptomycin foliar treatment and two foliar bactericide applications at 5-day intervals (a third or less of the recommended commercial dose) reduced disease severity in tomato seedlings by over 90% after 4 weeks, and significantly slowed disease development under mist conditions. A. brasilense did not induce significant systemic resistance against the pathogen although the level of salicylic acid increased in inoculated plants. Treatment of tomato seeds that were artificially inoculated with P. syringae pv. tomato, with a combination of mild chemo-thermal treatment, A. brasilense seed inoculation, and later, a single foliar application of a copper bactericide, nearly eliminated bacterial leaf speck even when the plants were grown under mist for 6 weeks. This study shows that a combination of otherwise ineffective disease management tactics, when applied in concert, can reduce bacterial speck intensity in tomatoes under mist conditions.  相似文献   

17.
An early event correlated with the gene-for-gene hypersensitive response (HR) is the accumulation of active oxygen species (AOS), also known as the oxidative burst. We present data that genetically demonstrates that the oxidative burst is a downstream component of the RPS2- avrRpt2gene-for-gene signal cascade. An in planta AOS assay using the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) was modified for use with the Arabidopsis thaliana / Pseudomonas syringae pv.tomato (P. syringae pv. tomato) model system. An oxidative burst occurred between 8 and 15 hpi with avirulent P. syringae pv. tomato(avrRpt2), but not with virulent P. syringae pv. tomato. This burst preceded cell death and was not observed in the RPS2 Arabidopsis mutantsrps2-101C and rps2-201 inoculated with avirulent P. syringae pv. tomato. An HR-like response has been observed when plants undergoing a systemic acquired resistance (SAR) response are challenged with a normally virulent pathogen (manifestation stage of SAR), however an HR-like oxidative burst was not detected by the in planta AOS assay during this stage of SAR.  相似文献   

18.
The tomato chlorosis virus (ToCV), transmitted by whitefly species of the genera Bemisia and Trialeurodes in a semipersistent manner, causes significant losses in solanaceous crops including tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum). Worldwide reports of natural and experimental infection of sweet pepper plants with ToCV are contradictory, raising the question of whether the critical factor determining infection is related to the susceptibility of sweet pepper cultivars or the genetics of virus isolates. In this work, ToCV isolates obtained from different hosts and geographical origins were biologically and molecularly analysed, transmitted by B. tabaci MEAM1 and MED, and the reaction of different sweet pepper cultivars was evaluated under different environmental conditions. Brazilian ToCV isolates from tomato, potato (S. tuberosum), S. americanum, and Physalis angulata did not infect plants of five sweet pepper cultivars when transmitted by B. tabaci MEAM1. Temperatures did not affect the sweet pepper susceptibility to tomato-ToCV isolates from São Paulo, Brazil, and Florida, USA. However, sweet pepper-ToCV isolates from Spain and São Paulo, Brazil, were transmitted efficiently to sweet pepper plants by B. tabaci MEAM1 and MED. Although the results indicated that ToCV isolates from naturally infected sweet pepper plants seem to be better adapted to plants of C. annuum, phylogenetic analyses based on the complete nucleotide sequences of RNA1 and RNA2 as well as the p22 gene did not reveal significant nucleotide differences among them. Additional studies are needed to identify intrinsic characteristics of ToCV isolates that favour infection of sweet pepper plants.  相似文献   

19.
Flagellin, an essential component of the bacterial flagellar filament, is capable of inducing a hypersensitive response (HR), including cell death, in a nonhost plant. A flagellin-defective mutant (ΔfliC) of Pseudomonas syringae pv. tabaci lacks both the flagellar filament and motility, whereas a flagellin-glycosylation-defective mutant (Δorf1) retains the flagellar filament but lacks the glycosyl modification of flagellin protein. To investigate the role of flagellin protein and its glycosylation in the interaction with its nonhost Arabidopsis thaliana, we analyzed plant responses after inoculation with these bacteria. Inoculation with wild-type P. syringae pv. tabaci induced HR, with the generation of reactive oxygen species and cell death. In contrast, inoculation with either ΔfliC or Δorf1 mutant induced a low level of HR, and inoculated leaves developed a disease-like yellowing. These mutant bacteria multiplied better than the wild-type bacteria in A. thaliana. These results indicate that A. thaliana expresses a defense reaction in response to the bacterial flagellin with its glycosyl structure.  相似文献   

20.
During the period 2006–2011, Pseudomonas syringae pv. syringae caused a bacterial inflorescence rot (BIR) epidemic in an Australian cool climate viticultural region. Molecular multilocus sequence typing of ‘housekeeping’ genes (MLST), biochemical testing and analysis of molecular variance (AMOVA) were used to characterize the genotypes and phenotypes of P. syringae pv. syringae grapevine isolates. Comparison of the MLST data with exemplars of phylogroups available at PAMDB demonstrated that the BIR isolates formed a new clade within P. syringae pv. syringae phylogroup 2 (PG02): putatively designated PG02f. Analysis of the MLST and phenotypic data by AMOVA demonstrated some genetic differences between the BIR isolates and the general vineyard P. syringae pv. syringae population. Isolates positive for syringopeptin, syringomycin and tyrosinase, tobacco leaf hypersensitivity reaction (HR), ampicillin resistance and grapevine leaf pathogenicity were genetically distinct from those negative for these factors. This study has shown that, generally, the core genome of P. syringae pv. syringae is only weakly associated with the virulence-associated traits. As the new phylogroup PG02f consists of the epidemic BIR isolates and nonpathogenic grapevine isolates, these genetically similar isolates differ greatly in pathogenicity and most of the other tested phenotypic traits. However, within the PG02f group, tobacco leaf HR and presence of sylC (the gene for phytotoxin syringolin A) are associated with the BIR and bacterial leaf spot (BLS) isolates, and negative for the nonpathogens, indicating that these two virulence factors may be associated with vineyard pathogenicity within the new Australian phylogroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号