首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the erosion research in the Palouse region of eastern Washington State, USA has focused on quantifying the rates and patterns of water erosion for purposes of conservation planing. Tillage translocation, however, has largely been overlooked as a significant geomorphic process on Palouse hillslopes. Tillage translocation and tillage deposition together have resulted in severe soil degradation in many steep croplands of the Palouse region. Few controlled experiments have heretofore been conducted to model these important geomorphic processes on Palouse hillslopes. The overarching purpose of this investigation, therefore, was to model tillage translocation and deposition due to moldboard plowing in the Palouse region. Soil movement by moldboard plowing was measured using 480-steel flat washers. Washers were buried in silt loam soils on convex–convex shoulder, linear-convex backslope, and linear-concave footslope landform components, and then displaced from their original burial locations by a moldboard plow pulled by a wheel tractor traveling parallel to the contour at ca. 1.0 m s−1. Displaced washers were located using a metal detector, and the distance and azimuth of the resultant displacement of each washer from its original burial location was measured using compass and tape. Resultant displacement distances were then resolved into their component vectors of displacement parallel and perpendicular to the contour. A linear regression equation was developed expressing mean soil displacement distance as a function of slope gradient. Tillage translocation and deposition were modeled as diffusion-type geomorphic processes, and their rates were described in terms of the diffusion constant (k). A multivariate statistical model was developed expressing mean soil displacement distance as a function of gravimetric moisture content, soil bulk density, slope gradient, and direction of furrow slice displacement. Analysis of variance (ANOVA) revealed a weak correlation between soil displacement and both bulk density and moisture content. Soil displacement was, however, significantly correlated with direction of furrow slice displacement. Tillage translocation rates were expressed in terms of the diffusion constant (k) and ranged from 105 to 113 kg m−1 per tillage operation. Tillage deposition rates ranged from 54 to 148 kg m−1 per tillage operation. With respect to tillage deposition, the diffusion constant calculated from volumetric measurements of tillage deposits equals ca. 150 kg/m. The rates of tillage translocation and deposition are not completely in balance; however, these rates do suggest that soil tillage is a significant geomorphic process on Palouse hillslopes and could account for the some of the variations in soil physical properties and crop yield potential at the hillslope and farm-field scale in the Palouse region.  相似文献   

2.
Soil degradation is the single most important threat to global food production and security. Wind and water erosion are the main forms of this degradation, and conservation tillage represents an effective method for controlling this problem. The objective of this study was to quantify the effects of three tillage methods [zero (ZT), minimum (MT) and conventional (CT)] and three four-year crop sequences [spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow; spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat; spring wheat–flax–winter wheat–field pea (Pisum sativum L.] on crop establishment, plant height, seed weight, soil water storage, crop water use, crop water use efficiency and grain yield over a 12-year period under Canadian growing conditions. Plant establishment was not adversely affected by tillage systems or crop sequences except for flax, where a small reduction was observed with ZT and MT. Conservation tillage showed a yield benefit over CT of 7%, 12.5% and 7.4% for field pea, flax and spring wheat grown on cereal stubble, respectively over the 12 years of the study. Much of the yield increase was due to an increase in soil water in the 0–30 cm soil layer with ZT and MT. However, tillage systems had no effect on grain yield for spring wheat grown on fallow and field pea stubble due to a lack of differences in spring soil water content. Flax grown in sequence with cereals only yielded higher than when it was grown in the sequence which included field pea, even though flax was seeded on spring wheat stubble in both cases. Winter wheat yielded higher when grown on flax stubble than on spring wheat stubble. The results indicate that a one-year non-cereal break crop was enough to alleviate the negative effects of consecutive cereal crops on winter wheat. Spring wheat grown on field pea stubble always yielded more than when grown on cereal stubble. A 10% increase in water use efficiency was observed with flax grown with ZT and MT management. Crop sequence improved water use efficiency in flax and spring wheat. Growing spring wheat on field pea stubble as opposed to growing it on cereal stubble resulted in a 10% increase in water use efficiency. Overall, rainfall accounted for 73%, 72%, 67% and 65% of total water used by field pea, flax, winter wheat and spring wheat, respectively. This explains the large year effect as a result of variation in growing (May–August) season precipitation. The non-significant tillage system by year interaction implies that the positive benefits of ZT and MT occur over a wide range of growing conditions, while the absence of a tillage system by crop sequence interaction suggests that knowledge developed under CT management also applies to ZT and MT. The results of this study support the large shifts towards in conservation tillage being observed in the Canadian prairies.  相似文献   

3.
Field experiments were conducted on a clay soil in entisol to determine the effect of different tillage tools on soil properties, emergence rate index and yield of wheat in Middle Anatolia. There were four different tillage treatments: mouldboard ploughing followed by disc harrowing twice; rotary tillage twice; stubble cultivator followed by a disc harrowing; heavy globe disc twice. The smallest aggregate mean weight diameters and surface roughness were produced by rotary tillage. Decreasing mean weight diameter decreased the surface roughness. There was a significant (P < 0.01) effect of the four different tillage systems on moisture content, bulk density, penetration resistance, aggregate mean weight diameter and surface roughness. Tillage systems had a significant effect on emergence rate and yield of wheat. Emergence rate index and yield of wheat varied from 15.24 to 18.88 and from 3065 kg ha−1 to 4265 kg ha−1, respectively. The greatest emergence rate index and yield were obtained with stubble cultivator followed by disc harrowing treatment.  相似文献   

4.
花后阴雨对小麦籽粒淀粉合成和干物质积累的影响   总被引:1,自引:0,他引:1  
针对长江中下游小麦开花期常遇连阴雨导致减产的现象,研究阴雨寡照对小麦籽粒淀粉合成和干物质积累的影响,旨在为该地区小麦抗逆稳产栽培提供理论依据。选用长江中下游小麦主栽品种‘扬麦18’(受渍迟钝型)和‘皖麦52’(受渍敏感型)为试验材料,在小麦开花后设置7 d、11 d和15 d的渍水遮阴处理,研究渍水遮阴对小麦籽粒发育过程中淀粉合成相关酶活性及淀粉、干物质积累的影响。结果表明,渍水遮阴处理后,小麦籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、可溶性淀粉合成酶(SSS)和结合态淀粉合成酶(GBSS)活性在灌浆前期(花后10~15d)与对照差异不显著,随着灌浆进程的推进,渍水遮阴处理与对照之间差异增大。灌浆中期(花后20 d)小麦籽粒中AGPase和SSS活性达到峰值时,渍水遮阴处理11 d、15 d的‘扬麦18’和‘皖麦52’籽粒中AGPase活性分别较对照下降1%、10%和11%、24%,SSS活性则下降5%、11%和9%、32%,且渍水遮阴处理11 d和15 d的小麦籽粒中SSS和GBSS活性在灌浆后期显著低于对照。用Logistic方程分别拟合籽粒淀粉和干物质的积累,花后渍水遮阴处理缩短了籽粒灌浆缓增期,降低了小麦籽粒灌浆的平均速率、淀粉积累的最大速率及平均速率,减少了籽粒淀粉和干物质的积累量。同时,渍水遮阴处理降低了小麦穗粒数和千粒重,使产量显著下降。随着渍水遮阴处理时间的延长,小麦籽粒中淀粉合成相关酶活性、干物质积累量及产量的下降幅度越大。迟钝型品种‘扬麦18’各指标的下降幅度均小于敏感型品种‘皖麦52’。小麦开花后渍水遮阴处理降低了籽粒中AGPase、SSS和GBSS活性,不利于籽粒淀粉合成及干物质的积累,导致产量下降显著。  相似文献   

5.
A field study was performed for two consecutive seasons to evaluate the effect of polyacrylamide (PAM), tillage systems and particle size on soil physical properties and wheat grain yield. The PAM rates were 0, 10 and 20 kg ha?1 while the tillage treatments included no-tillage (NT), moldboard plowing (CT1), and chisel plowing (CT2). Soil fine particles size of two locations were A (25.2 silt + clay) and B (38.5 silt + clay). Location B reported higher organic matter and total porosity while lower in bulk density. The CT1 and NT treatments denoted better soil organic matter percentage. The CT1 presented maximum infiltration rate compared to other tillage systems. No tillage showed better soil water contents while the minimum was in CT1 of location A and CT2 of location B. Increasing the PAM rate increased total porosity, infiltration rate and soil water content while decreased soil bulk density. Possibly, the presence of compacted layer in location A hindered the effect of PAM. At location B, the CT2 with PAM of 20 kg ha?1 had the highest grain yield compared to other tillage systems. The PAM is beneficial for soil and water conservation and can be used in agriculture.  相似文献   

6.
Stand establishment and subsequent autumn development and growth are important determinants of winter wheat (Triticum aestivum L.) yield. Soil management practices change soil properties and conditions, which alter seedling emergence, crop development and growth. Pre-plant soil management practices were studied for 6 years in a wheat–fallow rotation in eastern Colorado, USA, to isolate the impacts of pre-plant tillage (PT) and residue level on winter wheat seedling emergence and autumn development and growth. A split plot design was used with PT, using a moldboard plow that incorporated surface residue, and with no-tillage (NT). The tillage systems represented the main plots and three residue levels within each tillage treatment as subplots: no residue (0R), normal residue (1R) and twice-normal residue (2R). Residue amount had little effect on emergence or autumn growth and development. PT resulted in soil water loss from the plow zone. NT plots had more favorable soil water levels in the seeding zone which resulted in faster, more uniform and greater seedling emergence in 4 out of the 6 years. This is especially critical for stand establishment in years with low rainfall after planting. Soil or air temperature did not account for differences among treatments. Earlier and greater seedling emergence in NT treatments resulted in greater autumn development and growth. Shoot biomass, tiller density and leaf numbers were greater in NT, and again residue amount had little effect. At spring green-up, NT treatments had greater soil water in the profile. Grain yield was always equal or greater in NT than in PT, and positively correlated with earlier/greater seedling emergence and autumn growth. NT will enhance soil protection and likely increase snow catch, reduce evaporation and benefit yield in semiarid eastern Colorado.  相似文献   

7.
为探索降水量分配对作物产量的作用机制和规律,在对APSIM模型检验的基础上,运用APSIM模型和多元积分回归方法研究黄土高原雨养农业区降水季节分配对作物产量的影响。结果表明:APSIM模型可用来模拟小麦和豌豆的产量;作物产量除与年降水总量有关外,还与降水量的季节分配有关;降水量的季节分配对小麦和豌豆产量影响为开口向上的二次曲线,并且都为正效应;当年6~7月份降水对小麦产量影响最大,5~6月份降水对豌豆产量影响最大,最大贡献率为每增加1mm的降水量,小麦增产10.4kg·hm-2,豌豆增产10.3kg·hm-2;降水量季节分配比年降水总量对作物产量的形成有更为深刻的影响。  相似文献   

8.
干物质是作物光合作用产物的最高形式,其积累动态特性与籽粒产量有密切关系,研究前茬作物不同秸秆还田方式对后茬地膜覆盖作物地上干物质积累特性与产量形成的影响,对优化作物高产高效栽培理论和技术具有重要意义。本研究通过田间试验,在干旱内陆灌区研究了前茬春小麦不同秸秆还田方式(免耕秸秆覆盖还田,NTM;免耕秸秆立茬还田,NTS;传统翻耕秸秆还田,CTS;传统翻耕无秸秆还田,CT,对照)对后茬玉米地上干物质积累规律及产量形成的调控效应。结果表明:前茬春小麦免耕秸秆还田(NTM,NTS)提高了后茬玉米地上干物质最大增长速率和干物质平均增长速率,延迟了干物质最大增长速率出现的时间,以NTM处理作用效果最明显,较CT玉米地上干物质最大增长速率和干物质平均增长速率分别提高5.7%、11.2%,玉米地上干物质最大增长速率出现时间延迟3.4d,差异达显著水平(P0.05)。NTM、NTS处理可长时间保持后茬玉米相对较高的地上干物质积累速率,有效延缓吐丝至灌浆期后茬玉米地上干物质积累速率的降低,维持较长的地上干物质积累期,提高完熟期地上干物质积累量,NTM和NTS较CT处理玉米收获期地上干物质积累量分别提高11.3%和9.9%(P0.05)。NTM、NTS和CTS比CT处理分别增产15.6%、13.0%和7.8%,以NTM处理增产幅度较大,较CTS增产7.3%(P0.05),增产的主要原因为穗数、穗粒数及粒重的协同提高。通过关联矩阵分析表明,通过优化前茬春小麦秸秆还田方式影响后茬玉米穗数来调控群体大小,进而协调穗粒数与粒重,通过三者相互协调发展可实现增产。因此,前茬春小麦免耕25~30cm覆盖秸秆还田(NTM)是典型干旱内陆灌区优化后茬玉米干物质积累特性及获得高产的理想耕作措施。  相似文献   

9.
The effects of five tillage treatments: no tillage (NT), disc harrowing (DH), mouldboard ploughing followed by disc harrowing (MPH), disc ploughing followed by disc harrowing (DPH), and disc ploughing followed by two passes of disc harrowing (DPHH) on crop residue cover, soil properties and some yield parameters of cowpea were investigated for a derived savannah ectone soil. The residue left on the soil surface for NT, DH, and MPH is not significantly different. The NT left 32.1 and 44.3% more residue on the soil surface than the DPH and DPHH treatments, respectively. The NT treatment had least average value of soil bulk density of 1.01 g/cm3. The mean soil bulk densities for the DH, MPH, DPH and DPHH vary between 1.20 and 1.35 g/cm3. The soil moisture content decreased with increasing soil depth. At the soil depth of 10–30 cm, the cone penetration resistance at NT was 1.18 MPa compared with 0.92 MPa for the DH treatment, although these were not significant (p≤0.05). The tillage treatments had a significant effect on grain yield, mass of leaves and stems, root length density, and number of pods per plant of cowpea except on the germination count. DH and NT treatments gave different grain yield and number of pods per plant but these values were not statistically different and represent the highest grain yield and number of pods per plant among the other treatments were considered. The root zone exploration revealed highest root density at shallow depths with the DH and MPH treatments.  相似文献   

10.
A water crisis that occurs in Sudan during winter due to the competition for water to irrigate cotton (Gossipium barbadense L.) and wheat (Triticum aestivum L.) and to produce hydroelectric power necessitates a search for efficient means and ways of conserving water. Tillage is one of the methods for soil moisture conservation. Experiments were conducted in Gezira, Sudan on a Vertisol to determine if tillage practices and the lengthening of irrigation interval beyond two weeks during the period October–February would conserve irrigation water and maintain cotton yields. The residual effects of cotton tillage systems on the following wheat were also evaluated. The cotton experiment was conducted in split plot design with three replications. Three irrigation treatments of two-, three- and four-week intervals during the period October–February were used as main plots. Six tillage treatments were used as split plots (combinations of disc ploughing, cultivator and ridging). Treatments were compared by measuring cotton plant height and yields. Significant decreases in cotton yield were found between the four-week, and the two- and three-week irrigation intervals. However, no significant differences in cotton yields between the two- and the three-week irrigation intervals were detected. The lengthening of irrigation interval from two to three weeks during the period of irrigation water crisis (October–February) would result in conservation of about 3000 m3 ha−1 of irrigation water. This corresponds to about 600 000 000 m3 of water for the cotton irrigated area in the Sudan. Therefore, the three-week irrigation interval during the period October–February has the potential for water conservation for cotton production in Gezira Vertisols, with the use of economical shallow tillage. The tested deep and shallow cotton tillage treatments did not have residual effects on the following wheat crop.  相似文献   

11.
The interplay between the carbon and other nutrient cycles is the key to understand the responses of soil ecosystems to climatic change. Using the free-air CO2 enrichment (FACE) techniques, we carried out a multifactorial experiment in a Chinese rice-wheat rotation system, to investigate the response of soil nematodes to elevated CO2 under different application rates of N fertilizer (225.0 kg N ha−1 (HN) and 112.5 kg N ha−1(LN), respectively) and residue incorporation (0 kg C ha−1 (ZR), 1000 kg C ha−1 (MR) and 2000 kg C ha−1 (HR), respectively). This study was conducted during the wheat growing season of 2007 after expose to the elevated CO2 for three years. The results in our study indicated that seasonality is an important factor in determining changes in the nematode abundance and diversity. The residue addition effects were more obvious than the elevated CO2, which significantly influenced the abundance of total nematodes and plant-parasites, and some ecological indices. The interactions between residue addition and CO2 significantly influenced nematode dominance and structure indices. High level of N fertilization was found to decrease the nematode diversity, generic richness and maturity indices at wheat jointing stage. There are significant interactions between N fertilization and elevated CO2 for abundance of total nematodes and different trophic groups.  相似文献   

12.
In southwestern region of Punjab in north India, sowing dates of cotton crop in cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) system are staggered from last week of April to mid of May depending upon the surface water supply from canal as ground water is not fit for irrigation. Further, farmers practice intensive cultivation for seedbed preparation and burning of wheat straw before sowing of cotton crop. With the present farmers’ practices, yields have become static and system has become non-profitable. Field experiments were conducted on Entisols for two rotations of cotton–wheat system during the years of 2004–2005 and 2005–2006 in split plot design to study the direct and interactive effects of date of sowing and tillage-plus-wheat residue management practices on growth and yield of cotton and wheat and to increase the profitability by reducing the tillage operations, which costs about 50% of the sowing cost. The pooled analysis showed that in cotton crop, there was a significant interaction between year × dates of sowing. Among different tillage-plus-wheat residue management practices yields were 23–39% higher in tillage treatments than minimum-tillage. In wheat, grain yield in tillage treatments were at par. Water productivity amongst the tillage treatments in cotton was 19–27% less in minimum tillage than others tillage treatments. Similar trend was found in wheat crop. Remunerability of the cotton–wheat system was more with a combination of reduced tillage in cotton and minimum tillage in wheat than conventional tillage.  相似文献   

13.
Abstract

Imbalanced and indiscriminate use of chemical fertilizers has been adversely influencing the quality of soil, environment, biodiversity and nutrient status in soil. Conjoint application of bio-inoculants (BI) with organic or inorganic sources of nutrients tweaks nutrient synchrony in soil and improves plant nutrition. With this backdrop an experiment was conducted at Indian Agricultural Research Institute, New Delhi during 2016–2018. The objectives were to identify the suitable combinations of BI-mediated nutrient sources for higher productivity and profitability in pigeon pea–wheat cropping system (PWCS). The nine pigeon pea treatments; four sole applications viz., recommended dose of fertilizers (RDF), vermicompost (VC), farm yard manure (FYM), leaf compost (LC) and four conjoint applications viz., RDF?+?BI, VC?+?BI, FYM?+?BI and LC?+?BI and one control were replicated thrice under randomized block design (RBD). However, in succeeding wheat, each of the treatments applied to pigeon pea was further allocated to two levels (50% and 100%) in factorial RBD. Findings exhibit that FYM?+?BI could result into higher equivalent-system grain productivity (10.4 and 10.8?t?ha?1 during 1st and 2nd year, respectively) of PWCS. However, profitability parameters of PWCS were higher with the RDF?+?BI. Uptake of nutrients (NPK) was significantly higher with FYM?+?BI in pigeon pea and RDF?+?BI in wheat. Nutrient harvest index (NHI) did not vary significantly in both the crops. Conclusively, bio-inoculation is more productive and beneficial in general, while, over the various combinations, recommendation of FYM?+?BI combination could be more productive and sustainable.  相似文献   

14.
Abstract

Out‐wintering pads are a cattle housing system, consisting of a layer of timber residue over an artificially drained surface. Residues from out‐wintering pads that require management include liquid effluent and spent timber residue (timber soiled with manure). In Ireland, the current management strategy for these materials is to apply them to grassland for the production of silage. The main objective of this study was to determine the dry‐matter yield and nitrogen (N) response of first and residual cut silage to spent timber residue at three rates (10, 30 and 50 t ha?1). No silage yield or N response was observed from application of spent timber residue. A secondary objective was to determine the impact of dry timber residue (i.e., not soiled with manure) on silage yield and N response for first, second, and third cut silage. A significant negative response was observed for first cut silage yield in response to dry timber residue. However, no effect was observed for the second and third cut silage yield.  相似文献   

15.
本文对夏玉米秸秆(MR)和冬小麦秸秆(WR)单施或者与P肥混施(在等P量条件下)对石灰性土壤P的吸附特性及其形态转化进行了为期15周的室内模拟培养研究,结果表明,无论是MR和WR单施,还是秸秆与P肥混施,都可以减少土壤对P的吸附量,提高土壤P的活性,其中秸秆单施处理的活性无机磷(Pi)和有机磷(Po)(NaHCO3-P或者NaOH-P)提高较大,夏玉米秸秆单施时,比对照(CK)增加Pi、Po的量分别达6.0、5.6mgkg-1(NaHCO3-P),增加NaOH-Po为12.7mgkg-1。并通过Langmuir方程求得P的最大吸附量(b)、P吸附结合能常数(k)、P素最大缓冲量(MPBC)、标准需P量(SPR)的值,进一步说明了两种秸秆均可使土壤对P的吸附能力降低,增加土壤中P的活性。  相似文献   

16.
水分胁迫下不同年代冬小麦品种干物质积累与转运特性   总被引:3,自引:0,他引:3  
为了明确河南中部地区冬小麦品种改良过程中物质积累与转运特性及对水分亏缺响应的差异, 选取新中国成立以来6个不同年代主栽冬小麦品种, 采用测坑试验研究了冬小麦品种在不同水分胁迫(CK: 充分供水田间持水量的75%~85%; MD: 轻度干旱, 田间持水量的60%~70%; SD: 重度干旱, 田间持水量的45%~55%)下干物质生产与积累转运特性的演进特征及其与产量的关系。结果表明, 品种改良协调了干物质在各生育阶段的分配, 使花前和花后干物质积累与转运对籽粒的贡献更加平衡。在品种更替过程中, 株高和穗下节降低, 千粒重、籽粒产量和收获指数增加, 干物质积累总量无显著差异, 千粒重和收获指数的提高对产量增加起重要作用。在CK、MD和SD处理下, 20世纪90年代和2002年品种比20世纪50年代品种平均株高降低35.2%、36.2%和38.2%, 平均千粒重比增加31.7%、17.4%和56.3%, 平均籽粒产量增加40.4%、43.0%和52.4%; 20世纪90年代和2002年品种的收获指数比20世纪80年代及以前品种增加31.4%、22.3%和24.6%。CK处理早期品种干物质积累在抽穗至开花阶段超过现代品种。MD和SD处理的20世纪90年代及以后的品种花前干物质转运能力高, 茎秆干物质输出率增加, 花后贮藏物质积累降幅小, 干物质贮藏转运分配比例适宜, 对籽粒贡献率高, 是水分胁迫条件下现代品种高产的基础。  相似文献   

17.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

18.
淮北砂姜黑土区小麦单产变化及影响因素分析   总被引:4,自引:2,他引:4  
砂姜黑土是黄淮海平原三大低产土壤之一,研究低产区粮食产量的影响因子,对于提高低产区的粮食生产具有重要意义。以阜阳地区为例,分析1949年以来淮北砂姜黑土区小麦单产、光温生产潜力及差距变化,运用灰色关联法分析小麦单产同各要素的关联度。结果表明,1970~2000年各因素的关联序依次为钾肥>复合肥>农机总动力>磷肥>氮肥>有效灌溉面积。钾肥是小麦单产的限制因子,农机总动力与小麦单产关系密切,氮、磷肥对小麦单产的影响下降,有效灌溉面积的关联序呈上升趋势。各要素对小麦单产的关联度均较高,但在不同阶段各要素的关联序也不同。最后提出淮北砂姜黑土区可持续发展的基本途径。  相似文献   

19.
In irrigated grain-growing soils on Canada's prairies, straw management can affect nitrogen (N) fertility and long-term soil organic matter reserves. We conducted a 2-year field experiment in southern Alberta, on a Dark Brown Chernozemic Lethbridge loam (Typic Boroll), to determine the effects of straw removal, tillage, and fertilizer timing on crop uptake of soil and fertilizer N. During the study (1991 and 1992), the crop was oat (Avena sativa L.) and wheat (Triticum aestivum L.), respectively, in an experiment that had been in a wheat-wheat-oat-wheat rotation since 1986. Five straw-tillage treatments were: straw-fall plow, straw-pring plow, no straw-fall plow, no straw-spring plow and no straw-direct seeding. Fertilizer N was applied in fall or spring. Ammonium nitrate (5 at.% 15N) was added at 100 kg N ha−1 in fall 1990 or spring 1991. For oat (1991), plant N derived from soil was higher under fall plow than under spring plow, higher with tillage than direct seeding, and unaffected by straw removal. The plant N derived from fertilizer was not affected by straw removal in fall plow treatments, but under spring plow, it was higher with straw removal. The plant N derived from fertilizer showed a significant straw-tillage × fertilizer timing interaction; with fall incorporated straw, plant N derived from fertilizer was 44.0 kg N ha−1 for spring-applied, and 30.6 kg N ha−1 for fall-applied N, but in other straw-tillage treatments there was no effect of fertilizer timing. Cumulative fertilizer N recovery (plant + soil) over the 2 years averaged 64.2%, and was unaffected by straw-tillage treatment. Fertilizer N recovery, however, was less with fall-applied N (61.3%) than spring applied N (66.8%). At mid-season, fall plow treatments had higher soil inorganic N and inorganic N derived from fertilizer than spring plow treatments, apparently because of less immobilization. The fall plow treatments also retained higher inorganic N after harvest. Straw removal and fertilizer timing did not influence soil inorganic N and soil inorganic N derived from fertilizer. N removal in straw (16 kg N ha−1 yr−1) could deplete soil N in the long-term. Long-term effects of tillage timing on soil N will depend on the relative amount of N lost by leaching with fall plowing and that lost by denitrification under spring plowing. With direct seeding, crop yield and uptake of soil N was less, and N losses by denitrification could be greater. Application of N in spring, rather than fall, should enhance crop N uptake, reducing N losses and enhancing long-term soil organic N.  相似文献   

20.
Leaf spotting diseases of wheat (Triticum spp.) are widespread in western Canada. Because these diseases are residue-borne, they are expected to be affected by changes in the quality and quantity of crop residues. A field study was conducted to determine the effects of summerfallow and tillage practices on leaf spotting diseases of spring wheat (T. aestivum L.) in the semiarid area of the western Canadian prairies. Leaf spot severity was greater in wheat grown after fallow than in continuous wheat when these systems were managed using either cultivator- or zero-tillage methods. Disease severity in wheat after fallow was similar in all three tillage methods: cultivator-, reduced-, and zero-tillage. Pyrenophora tritici-repentis (Died.) Drechs. (tan spot) was the pathogen most commonly isolated from lesioned leaf tissue. Crop residues collected in the spring of 1995 and 1996 from cultivator- and zero-tillage treatments were examined for the presence and density of fungal infective structures. The density of mature and immature structures, especially of P. tritici-repentis, was greater in residues from two years previous than in those from the previous growing season. Most of the residues in the continuous wheat system were from the previous crop. The apparent lower amount of initial inoculum available in a continuous wheat system than in wheat grown after fallow would explain the higher leaf spotting severity in the latter system. In addition, lower levels of infective structures on residues were found in wheat after fallow in zero- rather than in cultivator-tillage. However, similar disease levels in cultivator- and zero-tillage treatments suggest that the more favourable microclimate for disease development in a zero-tillage system might have compensated for the lower amounts of residue-borne inoculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号