首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Insufficient puddling with inappropriate implements or imprecise time/intensity may alter saturated water flow in paddy soil spatially or temporary due to change in aggregate size distribution, dry bulk density, saturated hydraulic conductivity, and percolation rate of the soil. In this study, spatial variability of saturated hydraulic conductivity (K s), a key parameter of the saturated water flow, in Fuchu Honmachi paddy plot (100 m × 28 m) was characterized based on dielectric or ADR dry bulk density (ρb-ADR) with help of non-similar media concept (NSMC) and geostatistics model to meet its correlation to subsurface percolation. A 100 cc core and an ADR data were sampled from each sub-plot (7 m × 7.5 m), and then were used for measuring and predicting ρb and K s. The predicted data agreed with the measured ones, in which they fitted well the x = y line with RMSE of 0.029 cm3 cm−3 (R 2 = 0.68), 0.027 g cm−3 (R 2 = 0.71) (ρb), and 0.098 cm d−1 (R 2 = 0.45) for θ, ρb, and K s, respectively. The predicted ρb and K s had similar trend in spatial variability to the measured ones particularly within the distance of 46.3–51.9 m and 26.2–27.9 m, respectively. The spatial variability of the predicted K s coincided to that of the subsurface percolation rate, in which they had similar distance of dependence. The results indicated that the presenting method can be reasonably accepted.  相似文献   

2.
Soil slaking is an environment-friendly technique that is gaining importance in restoring saline soils. The objective of this article is to evaluate the effect of initial water content (IWC) on saturated hydraulic conductivity (K s) in desalinization with slaking and drying. Accordingly, a slaking test was carried out during February, 2009 for evaluating the effects of slaking and drying on K s, sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) under various IWC. We prepared natural and air-dried soils of paddy field in Kojima Bay Polder, Japan to give different pre-drying, air-dried, and not dried (natural). The air-dried soils were resaturated. Each soil was well mixed, then dried to different initial moisture contents (60, 50, 40, 30, 20, and 10% by weight). The specimens were immersed into water in the pot for 24 h. The K s was measured, and cations in slaked and unslaked soils were analyzed. The K s was high under the water content below 30% in both the natural and the air-dried soils. But the effects were more pronounced in the natural soil. The air-dried soil showed far smaller K s than the natural soil. In outer solution, the highest SAR was noted at 30% in the natural and 30 and 20% in the air-dried soils. Significant decrease in ESP of the soils (slaked + unslaked) was also observed at the same water content. Lower water content was more effective in decreasing the soil ESP after desalinization from saline soil. The natural soil showed lower ESP and higher porosity, which was considered as a reason for higher K s of natural soil than that of air-dried soils. The results indicated that lower water content (10–30%) had no hazardous effect on K s by slaking and drying of soil.  相似文献   

3.
Water management is recognized as one of the most important factors in regulating nitrous oxide (N2O) emissions from paddy fields. In China, controlled irrigation (CI) is widely applied because it has been proved highly effective in saving water. During the rice-growing season, the soil in CI paddy fields remains dry 60–80% of the time compared with soil irrigated by traditional methods. This study aims to assess N2O emissions from paddy fields under CI, with traditional irrigation (TI) as the control. The cumulative N2O emission from CI paddy fields was 2.5 kg N ha−1, which was significantly greater than that from TI paddy fields (1.0 kg N ha−1) (P < 0.05). Soil drying caused substantial N2O emissions. The majority (73.9%) of the cumulative N2O emission from CI paddy fields was observed during the drying phase, whereas no substantial N2O emissions were observed when the soil was re-wetted after the drying phase. More and significantly higher peaks of N2O emissions from CI paddy fields (P < 0.05) were also detected. These peaks were observed ~8 days after fertilizer application at water-filled pore spaces (WFPS) ranging from 78.0 to 83.5%, soil temperature ranging from 29.1 to 29.4°C, and soil redox potential (Eh) values ranging from +207.5 to +256.7 mV. The highest N2O emission was measured 8 days after the application of base fertilizer at a WFPS of 79.0%, soil temperature of 29.1°C, and soil Eh value of +207.5 mV. These results suggest that N2O emissions may be reduced obviously by keeping the WFPS higher than 83.5% within 10 days after each fertilizer application, especially when the soil temperature is suitable.  相似文献   

4.
A new coupled model (PCPF–SWMS) was developed for simulating fate and behavior of pollutant in paddy water and paddy soil. The model coupled the PCPF-1, a lumped model simulating pesticide concentrations in paddy water and 1 cm-surface sediment compartment, and the SWMS-2D, a finite element numerical model solving Richard's and advection-dispersion equations for solute transport in soil compartment. The coupling involved improvements on interactions of the water flow and the concentration the pollutant of at the soil interface between both compartments. The monitoring data collected from experimental plots in Tsukuba, Japan in 1998 and 1999 were used to parameterise and calibrate hydraulic functioning, hydrodynamic and hydrodispersive parameters of the paddy soil. The analysis on the hydraulic functioning of paddy soil revealed that the hard pan layer was the key factor controlling percolation rate and tracer transport. Matric potential and tracer monitoring highlighted the evolution of saturated hydraulic conductivity (K S) of hard pan layer during the crop season. K S slightly decreased after puddling by clay clogging and strongly increased after mid term drainage by drying cracks. The model was able to calculate residential time in every soil layers. Residential time of tracer in top saturated layers was evaluated to be less than 40 days. It took 60 days to reach the unsaturated layers below hardpan layer.  相似文献   

5.
The micro paddy lysimeter (MPL) was developed and evaluated for its performance to simulate solute transport in paddy environment under laboratory conditions. MPLs were constructed using soil collected from Field Museum Honmachi of Tokyo University of Agriculture and Technology, Japan. For the physical characteristics of the hardpan layer, parameters such as thickness, and soil aggregate size, affecting the percolation rate were studied. For the plow layer, two types of plow soils, sieved and un-sieved soils were compared. The sieved soil plow layer was produced by mixing air-dried soils of different aggregate sizes of D > 9.50, 9.50 ≥ D > 4.75, 4.75 ≥ D > 2.0 mm and D ≤ 2.0 mm at 47.1, 19.5, 20.6, and 12.8%, respectively. The un-sieved plow layer soil was directly used after collecting from the field. Inert tracer was applied to ponding water with controlled boundary conditions to evaluate the reproducibility of the soil hydraulic characteristics. HYDRUS-1D was used to evaluate the movement of bromide tracer in the MPL. The proposed conditions of the MPL were that the hardpan layer can be made from soil aggregates smaller than 0.425 mm with 2 cm thickness and that the plow layer can be prepared with sieved or un-sieved soils. With these conditions, the obtained results proved that MPLs can be a useful tool to simulate solute transport in paddy environment.  相似文献   

6.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

7.
Percolation loss of water in rice fields is a major cause of low water use efficiency. Variation of infiltration rate and soil compactness in four paddy fields (with clay, silty clay, clay loam, and loam textures) was investigated in northern Iran. In each field, in longitudinal and transverse directions, points located 0.5, 2.5, 6.5, 12.5, … m from the bunds were selected and water infiltration rate and resistance to penetration of a pocket penetrometer were measured. The results showed that in clay soil, average final infiltration rate (f c) in longitudinal direction, transverse direction, and center of the field was 0.216, 0.136, and 0.08 cm day−1, respectively. The f c for loamy soil was 2.77, 2.32, and 0.409 cm day−1, respectively. Similar differences were observed in the other two soil textures. In general, effect of direction of the field for measuring infiltration rate was not statistically significant. Loam and clay loam soils, with resistance to penetration of 0.37 and 0.33 kg cm−2, were not significantly different. But, clay and silty clay soils with resistance to penetration of 0.25 and 0.14 kg cm−2 were significantly different (P < 0.05). Resistance to penetration of the penetrometer was not affected significantly (P < 0.05) by direction of measuring this parameter in the field. The conclusion is that if measured soil physical properties in a paddy field are going to be representative of the whole field, they should be measured at different locations, especially near the bunds. Another strategy for obtaining a representative infiltration rate or compactness for a paddy field is uniform puddling of the field.  相似文献   

8.
Water management is known to be a key factor on methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emissions from paddy soils. A field experiment was conducted to study the effect of continuous irrigation (CI) and intermittent irrigation (II) on these emissions. Methane, CO2, and N2O emissions from a paddy soil were sampled weekly using a semi-static closed chamber and quantified with the photoacoustic technique from May to November 2011 in Amposta (Ebro Delta, NE Spain). Intermittent irrigation of rice paddies significantly stimulated (N2O + N2)–N emission, whereas no substantial N2O emission was observed when the soil was re-wetted after the dry phase. The cumulative emission of (N2O + N2)–N was significantly larger from the II plots (0.73 kg N2O–N ha?1 season–1, P < 0.05) than from the CI plots (?1.40 kg N2O–N ha?1 season?1). Draining prior to harvesting increased N2O emissions. Draining and flooding cycles controlled CO2 emission. The cumulative CO2 emission from II was 8416.35 kg CO2 ha?1 season?1, significantly larger than that from CI (6045.26 kg CO2 ha?1 season?1, P < 0.05). Lower CH4 emission due to water drainage increased CO2 emissions. The soil acted as a sink of CH4 for both types of irrigation. Neither N2O–N nor CH4 emissions were affected by soil temperature. Global warming potential was the highest in II (4738.39 kg CO2 ha?1) and the lowest in CI (3463.41 kg CO2 ha?1). These findings suggest that CI can significantly mitigate the integrative greenhouse effect caused by CH4 and N2O from paddy fields while ensuring the highest rice yield.  相似文献   

9.
Summary

Increasing rates (5, 10, 25 and 40% v/v) of 6 sources of organic wastes were substituted for peat to assess changes in the physical properties of peat-perlite substrates and investigate the relationship between plant response and these properties. Wastes were either fresh or composted bio-filter sludge (FBF and CBF), sewage sludge (FSS and CSS), and de-inked paper sludge (FDP and CDP). Geranium plants (Pelagornium× hortorum ‘Orbit Hot Pink’) were grown in the substrates. Growing substrates' saturated hydraulic conductivity (Ks), air-filled porosity (f a), pore tortuosity (t), and relative gas diffusivity (Ds/Do) all increased linearly (p = 0.0001) as the rate of organic wastes increased. Geranium plant height (PHT), shoot dry mass (SDM) and root dry mass (RDM) were either linearly or quadratically decreased (p = 0.0001) as the amount of waste increased in the substrates. During both growing seasons, Geranium SDM and RDM were either linearly or quadratically correlated with Ds/Do and t. Organic waste types and their rate of application strongly affected the aeration status of the substrates. Ds/Do and t better expressed the relationship between plant growth and the physical conditions of the root zone.  相似文献   

10.
Conventional tillage and planting method for rice (Oryza sativa L.) production in northern Iran is wet tillage (puddling). Effect of different puddling intensities on physical properties of a silty clay soil (Typic Haplodalfs) was investigated under laboratory and field conditions. Changes in soil physical parameters and water requirement for puddling were measured. For laboratory experiments, undisturbed cylindrical soil samples (diameter and height of 50 cm), were used. A laboratory puddling apparatus was designed and constructed. The puddling intensity was measured by duration of puddling. Four levels of puddling intensity were used as: P 0 (no puddling, control), P 1 (low), P 2 (medium) and P 3 (high). For field tests, 12 plots of 8 × 4 m were selected. The first tillage was performed with a moldboard plow and then the plots were puddled with different intensity using a rotary tiller. The results showed that under laboratory conditions, water content of the puddled layers decreased with an increase in settling time. During drying period, P 0 dried faster than P 1, P 2 and P 3. Puddling with low intensity in laboratory and field conditions caused bulk density of 0–15 cm soil layer to decrease by 24.07 and 25.45%, respectively. Increasing puddling intensity increased the bulk density. Bulk density increased with time as particles settled after halting the puddling. Bulk density increased with depth as well. Under laboratory conditions, increasing puddling intensity from P 1 to P 2 reduced percolation rate significantly. For all puddling intensities, soil moisture characteristic curves of both field and laboratory samples showed that puddling increased the amount of water retained over the whole range of suctions. More water was needed for P 3 as compared to P 1 and P 2. Under the laboratory and field conditions, the P 3 required 27.72 and 28.58% more water as compared to P 2, respectively. Although the mechanisms implemented for puddling were different under laboratory and field experiments, the results were similar. Bulk density, soil moisture content and water percolation rate decreased faster in the puddled soil under field and laboratory conditions. Therefore, to reduce the cost and time, the laboratory method could be used to study the effects of puddling intensity on physical properties of paddy soils. Medium intensity puddling was shown to be the proper tillage practice for paddy fields with silty clay soil.  相似文献   

11.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

12.
A water balance model for paddy is developed primarily based on the principle of conservation of mass of soil–water within the root zone. The water balance for paddy is different from that of field crops because paddy requires standing water in the field during most of its growth period. This model requires soil, crop and meteorological data as inputs. This user friendly model was developed using computer programmes C and Visual Basic (VB) 6.0. It simulates various water balance components such as evapotranspiration, deep percolation, surface runoff and depth of irrigation water and ponding depth in the field on a daily basis. For estimation of deep percolation loss, physically based saturated and unsaturated flow processes are incorporated into the model to consider ponding (if there is standing water in the field), saturation (if moisture content of soil is in between field capacity and saturation) and depletion (if moisture content of soil is below field capacity) phases of paddy field. This article presents development of a user friendly water balance model for paddy and also its validation using published data.  相似文献   

13.
This study was conducted to investigate the impact of water salinity (ECw) and sodicity (SARw) on saturated (Ks) and relative (Kr) hydraulic conductivities in two clay (C) and sandy clay loam (SCL) soils. The results showed that the Ks decreased with increasing SARw, and in all of water quality treatments, the Ks of SCL soil was higher than that of the C soil. Sodicity effect (even at high SARw) on the Kr of clay soil was minimized by high salinity. Although Kr of both soils similarly responded to ECw and SARw, microstructure of clay soil was more sensitive to water quality. Effect of ECw on soil structure was greater than that of SARw. In order to assess the applicability of artificial neural networks (ANNs) in estimating Ks and Kr, two types of FFBP and CFBP ANNs and two training algorithms, namely Levenberg–Marquardt (LM) and Bayesian regulation, were employed with two strategies of uniform threshold and different threshold functions. Multiple linear regressions were also used for Ks and Kr prediction. Based on the ANN results of second strategy, best topology (4–5–4–1) was belonged to CFBP network with LM algorithm, LOGSIG–LOGSIG–TANSIG threshold functions, and values of MAE and R2 are equal to 0.1761 and 0.9945, respectively. Overall, the efficacy of ANNs is much greater than regression method for Ks prediction.  相似文献   

14.
《Plant Production Science》2013,16(4):333-341
Abstract: The need for solar radiation (Rs, MJ m–2 d–1) estimation remains a common concern for agronomists. Evaluation of crop productivity is primarily based on Rs data, which are difficult to collect because of cost and calibration requirements. Generally, historical Rs data are more difficult to obtain. This study focused on an estimation model based on the daily range of temperature and evaluated its accuracy from the viewpoint of crop productivity analysis. The variability of an empirical coefficient in the model (Krs), which was derived from the relation between Rs and daily range of temperature (Tmax – Tmin) was analyzed using climatic data observed in Japan considering data availability and quality. Krs had significant monthly differences, and it significantly increased from 1981 – 1985 to 2003 – 2007 at all 10 locations. Period-month interactions were not significant, except for in Utsunomiya, suggesting that the seasonal pattern did not change during the period. Weather data indicated that the increase in Krs was caused not only by increased solar radiation but also by a decrease in Tmax – Tmin. The substantial differences in Krs produced considerable bias for the estimated Rs when the estimation was conducted with a constant Krs (0.16). Despite the bias, the model is considered to perform well given the present availability of Rs data. The results of this study suggest that the evaluation of the seasonal pattern of Krs greatly improves the model accuracy.  相似文献   

15.
Delivery management water requirement (DMWR) is the use of bypass water in paddy field irrigation to help maintain desired water levels in irrigation canals and to distribute water to paddy plots in a uniform manner. Diverted irrigation water (DIW), DMWR, and the DMWR/DIW ratio were investigated for concrete lined irrigation ditches with large-sized paddy plots (100 m×100 m) during irrigation periods (May to mid-September). DIW and DMWR were measured at 5- to 10-day intervals at the inlets and outlets of irrigation ditches on stable water supply days. The mean DMWR/DIW ratios in irrigation ditches L1 and L2 over 3 years were 36 and 34%, respectively. The mean DMWR/DIW ratios displayed month-to-month and year-to-year variation. The monthly mean DMWR/DIW ratios were highest (55 and 71%) in June and lowest (<20%) in August and September. The annual mean DMWR/DIW ratios during a dry year markedly decreased to 11%, compared with 42% in other years. The decrease was due to the small DIW and farmers water management to maximize capture of limited irrigation water during the drought. The DMWRs in May and June were significantly (p<0.01) correlated with the DIWs, indicating that high DMWR in May and June are attributed to excessive DIW.  相似文献   

16.
Hydraulic resistance in plants is one of the most important factors responsible for changes in leaf water potential that is an indicator of plant water stress. Although the hydraulic resistance to passive water transport (Rpa) is a robust index in paddy rice (Oryza sativa), measurement is both time-consuming and labour-intensive. Here, we describe on a quick method to measure hydraulic resistance to osmotic water transport (Ros) by measuring the xylem sap exudation rate and osmotic water potential. In a greenhouse experiment, Ros responded significantly to soil temperature, but under field conditions soil temperature varied considerably less than air temperature. In the field experiment, Ros of six rice cultivars at two growth stages was strongly positively correlated with Rpa. We conclude that measuring Ros could be used to evaluate root water transport capacity in paddy rice under conditions with adequate soil water.  相似文献   

17.
Ponded water convection kinetics should be altered by growth stages of rice plants. We investigated the convective velocity of ponded water in a vegetated paddy field. The convective velocity was measured using the equipment through use of the principle of a hot-wire anemometer, and the temperature profile of the ponded water was measured using lysimeters with and without paddy rice vegetation. The maximum convective velocity in a vegetated plot was 0.7 mm s−1, slower than the maximum velocity in an unvegetated plot, which was 1.6 mm s−1. The convective velocity in a vegetated plot increased slightly when the temperature of the surface water was higher than that near the soil, between 09:00 and 17:00.  相似文献   

18.
We investigated the soil and soil water chemistry in abandoned terraced paddy fields (reed stand) and a thicket of deciduous broad-leaved trees (thicket stand) on the same slope in Sado Island, Japan. The soils gathered from these plots were incubated under different water conditions to examine the dynamics of dissolved ions. The organic carbon pool in the soil in the reed stand at the lower slope position was greater than the thicket stand at the middle slope position. The high concentration of base cations and an almost neutral pH of the soil water at the reed stand corresponded with the high exchangeable cation concentrations and base saturation in the soil. These results reflect the mineral-rich groundwater percolating down the slope, which may be produced by chemical weathering. An in situ sulfate reduction in the reed stand at deeper soil horizons was identified. The different water conditions in the incubated soils affected the soil pH(H2O), transformation of Fe, and dominant anions (NO3 , HCO3 , and SO4 2−). These biogeochemical processes were more conspicuous in the reed stand at the lower slope position where the concentrations of organic matter and base cations were high. When the abandoned terraced paddy field is developed for the conservation of the Japanese crested ibis (Nipponia nippon) habitat in Sado Island, the reductive subsoil at the lower slope position should be kept waterlogged to limit sulfuric acid generation.  相似文献   

19.
This research aims at elucidating the greenhouse gas emissions and its related soil microbial properties in continuously flooded or intermittently drained paddy soils in Japan and Indonesia. The study in Japan comprises alluvial soil and peat, cultivated to rice variety Nipponbare, while in Indonesia comprised alluvial soil cultivated to rice variety Siam Pandak. Intermittent drainage was performed to half number of the plot in 6 days interval, starting at tillering or heading stage of rice, while the other half number of plot was kept flooded as control. The experiments were carried out to follow the randomized block design with three replications. Gas samples were taken in weekly basis, except during the treatments (i.e., every 2 days interval) and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations. Soil samples were and analyzed for the population of methanogenic bacteria, denitrifiers, methane production and consumption potentials, and methanogenic substrate. Plant growth parameters were also observed. The results showed that intermittent drainage significantly reduced greenhouse gas emission from paddy soil of Indonesia and Japan without significant changes in soil microbial population. The reductions of greenhouse emission from Japanese peaty and alluvial paddy soil due to intermittent drained were about 32 and 37%, respectively. Meanwhile, the reductions in greenhouse gas emission from alluvial soil of Indonesia due to intermittent drainage were very similar to that of in Japan, i.e., average about 37%. This suggests that intermittent drainage can be an appropriate technology option to reduce the greenhouse gas emission from paddy soil in Japan and Indonesia.  相似文献   

20.
The objective of this research was to investigate the effect of water stress in regulated deficit irrigation (RDI) on the yield of soybean growing on Ultisol soil. This research was conducted under plastic house on the experimental farm of Lampung Polytechnique from August to November 2004. The water stress treatments in regulated deficit irrigation were ET1 (1.0 × ETc), ET2 (0.8 × ETc), ET3 (0.6 × ETc), ET4 (0.4 × ETc) and ET5 (0.2 × ETc), arranged in a randomized block design with four replications. ETc means crop evapotranspiration under standard condition, which was well watered. For example, the ET2 (0.8 × ETc) treatment means that the amount of supplied water per a day is the same as the crop adjustment evapotranspiration (ETcadj) with the value 0.8 of water stress coefficient (K s). The RDI treatments were carried out just at vegetative phase and its treatments were stopped at the beginning of flowering phase, and afterwards the treatments were watered at 1.0 × ETc. The results showed that since week II, the soybean experienced stress throughout the growth period except ET2 treatment. ET2 treatment started to be stressed at week V and continued to be stressed until the harvest time. At the ET3 treatment, the critical water content (θc) of soybean was reached at week II, and the θc was 0.24 m3/m3 on the average. The RDI at vegetative period significantly affected the yield. The highest yield was ET1 (35.2 g/plant), followed by ET2 (31.0 g/plant), ET3 (18.1 g/plant), ET4 (7.6 g/plant), and ET5 (3.3 g/plant). The optimal water management of soybean with the highest yield efficiency was regulated deficit irrigation with water stress coefficient (K s) of 0.80 for vegetative phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号