首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of variance were computed for records on growth and body composition traits made in 1983 by 255 boars and gilts in selected and control lines of Durocs and Yorkshires and their reciprocal crossbreds. Previous selection over a period of several generations was mainly on an index of sow productivity including preweaning litter sizes and weight. Animals in the select lines were selected for high index values; animals in the control lines were selected to average near the mean index values of that year and line. Breeding animals in all four lines during that period were basically randomly selected with regard to growth rate or body composition traits. The same boars sired both purebred and crossbred litters in 1983. Traits analyzed were average daily gain (ADG) during a standard test period from 56 d of age to 90.7 kg and average backfat thickness (ABF) and longissimus muscle area (LMA) from ultrasonic scans at 90.7 kg. Crossbred pigs had greater (P less than .01) ADG than purebred pigs, but did not differ (P greater than .05) in ABF or LMA. Heterosis was 8.2% for ADG. Crossbreds with Yorkshire dams had thinner (P less than .01) ABF and larger (P less than .01) LMA than crossbreds with Duroc dams. Boars had greater (P less than .05) ADG, thinner (P less than .01) ABF and smaller (P less than .01) LMA than gilts. Correlations between 38 half-sib family averages of purebred and crossbred pigs of the same sex and the same sires were .07, .37 and .24 for ADG, ABF and LMA, respectively. Implications of the above and additional findings for swine breeding strategies are discussed.  相似文献   

2.
An experiment with crossbred swine was conducted over six generations of selection based on an index (Index) of average daily gain in weight (ADG) in a test period from 56 d of age to 91 kg gross weight and average backfat thickness (ABF) measured from ultrasonic scans at 91 kg. Test pigs of the high protein select (HS) and control (HC) lines were fed a 24% crude protein (CP) diet and pigs of the low protein select (LS) and control (LC) lines were fed a 12% CP diet during the test period. The extent of genetic (selection line) x environmental (dietary) interaction effects was determined based on feeding closely related boars and gilts from both the HS and LS lines on both diets. Tests were conducted in 1986 and 1987 with progeny of the fifth and sixth generations of selection. Records for 472 pigs sired by 37 boars and out of 101 dams were analyzed for effects of selection and diets on AGE of pig at 91 kg, ADG, ABF, LMA (longissimus muscle area at the last rib) and Index. Statistically significant interactions effects of line x diet were noted (P less than .01) for AGE, ADG and Index, traits with low to moderate heritabilities (h2). For ABF and LMA, body composition traits with moderate or higher h2, interaction effects of line x diet were near zero. These results suggest that for best all-around future performance, traits such as AGE and ADG, selection probably should be practiced under dietary conditions under which future populations will be produced. For body composition traits such as ABF and LMA, selection probably would be more effective if pigs were fed a more enriched protein diet. However, as a practical matter, to more rapidly improve the genetic merit of the swine population, both the central station and on-the-farm testing programs should be conducted under standard commercial production systems.  相似文献   

3.
The objective of this project was to characterize changes in growth, carcass yield, and meat quality traits in castrates and gilts in response to divergent selection for testosterone production. In generation 21, endogenous testosterone concentrations in Duroc boars of the high (HTL) and low (LTL) testosterone lines averaged 49.0 and 27.8 ng/mL (P < 0.01), respectively. Eight LTL and 10 HTL boars were used to sire 29 LTL and 33 HTL litters. To remove the effects of inbreeding, these same boars were mated to females of a Large White x Landrace composite (WC) to generate 11 WC by LTL litters (WLT) and 23 WC by HTL litters (WHT). Castrates and gilts were then allotted to LTL (n = 53), HTL (n = 61), WLT (n = 102), and WHT (n = 101) for testing. Growth and carcass traits analyzed included days to 114 kg (D114), ADG, backfat adjusted to 114 kg (ABF), LM area adjusted to 114 kg and predicted percent lean (PPL). Fat-O-Meater data collected were adjusted fat depth (AFD), adjusted loin depth, and percent lean. Meat quality traits characterized at 24 h postmortem included marbling score, percent lipid, pH, drip loss, color score, and Minolta L*, a*, and b*. Data were analyzed with a mixed model including fixed effects of line, mating type (purebred or crossbred), sex, and the random effect of sire nested within line. All possible interactions among fixed effects were tested. The HTL had fewer D114 (P < 0.05), greater ADG (P < 0.01), greater ABF (P < 0.01), and lower PPL (P < 0.01) than LTL. The WHT and WLT did not differ for D114, ADG, or ABF. The WHT had smaller LM area adjusted to 114 kg (P < 0.05) and greater drip loss (P < 0.05) than WLT. The WLT had lower adjusted loin depth (P < 0.05) than LTL and HTL. The LTL and HTL had greater subjective scores for marbling (P < 0.05) compared with WLT and WHT. The least squares mean for percent lipid for HTL and LTL was 4.00. The WHT had greater means for L*, a*, and b* (P < 0.05) than WLT. Pigs selected for increased testosterone production grew faster and produced fatter carcasses than pigs selected for decreased testosterone. Changes in growth, carcass yield, and meat quality traits were detected in castrates and gilts in response to divergent selection for testosterone production.  相似文献   

4.
Data from 11 generations of a selection study were analyzed to estimate genetic correlations between boars and gilts, boars and barrows, and gilts and barrows for carcass traits in the Lacombe and Yorkshire breeds of swine. Genetic correlations were estimated to determine if genotype X sex interactions existed and to assess the need for separate genetic parameters for boars and gilts in selection response equations. Genotype X sex interactions were found for total carcass fat/kg of cold carcass weight, area of lean in the ham face/kg of cold carcass weight and percent lean in the ham face/kg of cold carcass weight. Carcass length, longissimus muscle area/kg of cold carcass weight percent ham of side and percent lean in the ham face did not have genotype X sex interactions. Selection based on pooled genetic parameters over sex were favored over selection based on separate genetic parameters regardless of the presence or absence of genotype X sex interactions.  相似文献   

5.
A 5-generation selection experiment in Yorkshire pigs for feed efficiency consists of a line selected for low residual feed intake (LRFI) and a random control line (CTRL). The objectives of this study were to use random regression models to estimate genetic parameters for daily feed intake (DFI), BW, backfat (BF), and loin muscle area (LMA) along the growth trajectory and to evaluate the effect of LRFI selection on genetic curves for DFI and BW. An additional objective was to compare random regression models using polynomials (RRP) and spline functions (RRS). Data from approximately 3 to 8 mo of age on 586 boars and 495 gilts across 5 generations were used. The average number of measurements was 85, 14, 5, and 5 for DFI, BW, BF, and LMA. The RRP models for these 4 traits were fitted with pen × on-test group as a fixed effect, second-order Legendre polynomials of age as fixed curves for each generation, and random curves for additive genetic and permanent environmental effects. Different residual variances were used for the first and second halves of the test period. The RRS models were fitted with the same fixed effects and residual variance structure as the RRP models and included genetic and permanent environmental random effects for both splines and linear Legendre polynomials of age. The RRP model was used for further analysis because the RRS model had erratic estimates of phenotypic variance and heritability, despite having a smaller Bayesian information criterion than the RRP model. From 91 to 210 d of age, estimates of heritability from the RRP model ranged from 0.10 to 0.37 for boars and 0.14 to 0.26 for gilts for DFI, from 0.39 to 0.58 for boars and 0.55 to 0.61 for gilts for BW, from 0.48 to 0.61 for boars and 0.61 to 0.79 for gilts for BF, and from 0.46 to 0.55 for boars and 0.63 to 0.81 for gilts for LMA. In generation 5, LRFI pigs had lower average genetic curves than CTRL pigs for DFI and BW, especially toward the end of the test period; estimated line differences (CTRL-LRFI) for DFI were 0.04 kg/d for boars and 0.12 kg/d for gilts at 105 d and 0.20 kg/d for boars and 0.24 kg/d for gilts at 195 d. Line differences for BW were 0.17 kg for boars and 0.69 kg for gilts at 105 d and 3.49 kg for boars and 8.96 kg for gilts at 195 d. In conclusion, selection for LRFI has resulted in a lower feed intake curve and a lower BW curve toward maturity.  相似文献   

6.
Reciprocal cross differences have been reported for growth rate and carcass traits in F1 pigs with the Duroc (D) as a parent breed. Such differences are synonymous with maternal effects if effects of sex linkage and genomic imprinting are negligible. In the present study, transfer of embryos (ET) to paternal breed recipients partitioned effects occurring at or before fertilization from postfertilization effects for growth and carcass traits in F1 D-Landrace (L) pigs. Fifteen boars sired 115 F1 litters, 49 produced by ET. Growth rate of 349 barrows and 361 gilts and carcass measurements on 256 barrows and 159 gilts were analyzed assuming mixed linear models with animal and litter as random effects. Contrasts among genotype (D x L, L x D)- treatment (ET, non-ET) means were tested. Reciprocal cross differences were not detected for growth rate or for carcass weight, length, average backfat thickness, estimated carcass lean, or lean per day of age. Reciprocal cross differences for 10th rib backfat thickness (BF) and longissimus muscle area (LMA) were detected only in barrows. The sexual dichotomy for reciprocal cross differences followed expectations for a Y-linked gene(s), consistent with the fact that reciprocal D-L crossbred barrows exhibited a paternal effect, with responses more like the sire breed than the dam breed. Barrows that were non-ET from D sires and L dams had 3.9 cm2 larger LMA and 5.8 mm less BF than barrows from L sires and D dams (P less than .001). Barrows from ET sired by D boars had 3.8 cm2 larger LMA than did barrows from ET sired by L boars (P less than .001), although no difference was detected for BF. Barrows sired by D boars reared in a D postfertilization environment (ET) had 6.2 cm2 greater LMA and 4.1 mm less BF (P less than .05) than barrows sired by L boars gestated and reared by D dams (non-ET). Barrows sired by D boars reared by L dams (non-ET) had 1.5 cm2 greater LMA and 2.3 mm less BF (P greater than .10) than barrows sired by L boars reared by L dams (ET). In conclusion, reciprocal cross differences detected for BF and LMA in barrows were established before or at fertilization and seemed to be Y-linked.  相似文献   

7.
Mass selection for increased weight at 70 d of age was practiced for six generations in a line of Landrace pigs. It was desired to have the next generation sired by the heaviest nine boars and out of the heaviest 27 gilts. A contemporaneous, randomly selected (by pedigree) control line was maintained in which the next generation was sired by five boars and out of 10 gilts. Inbreeding coefficients were .208 and .214 for the selected and control line litters and .177 and .189 for the selected and control line dams in the sixth generation, respectively. A total of 1,906 pigs was farrowed with 70-d weights collected on 1,267 pigs. These pigs were sired by 88 boars and out of 190 gilts. The generation interval was 13 mo. Six traits were studied: birth, 21-d, 35-d and 70-d weights and preweaning (from birth to 35 d) and postweaning (from 35 to 70 d) daily gains. Direct and correlated responses per generation and per weighted cumulative selection differential (WCSD) were estimated. Total WCSD for 70-d weight was 30.3 kg. This corresponds to a standardized WCSD of 6.11 phenotypic standard deviations. The response per generation for 70-d weight was .65 +/- .29 kg. The realized heritability for 70-d weight was .13 +/- .06. Nearly all the increased weight at 70 d was the result of more rapid growth in the postweaning period, with little difference in growth in the preweaning period; birth, 21-d and 35-d weights and preweaning daily gains remained unchanged by selection for 70-d weight.  相似文献   

8.
晋汾白猪是以马身猪、太湖猪、长白猪和大白猪为育种素材,通过复杂杂交育种和标记辅助选择而育成的一个瘦肉型猪新品种。试验对6个世代后备猪生长发育性状的选育结果进行分析,结果发现,后备公猪6世代与0世代相比,初生重提高了0.13 kg,断奶重提高了0.56 kg,70日龄体重提高了1.69 kg,180日龄体重提高了12.46 kg,70~180日龄平均日增重提高了107.00 g,差异均显著(P<0.05);后备母猪180日龄体重6世代比0世代显著提高了10.84 kg(P<0.05)。后备公猪和母猪4、5世代的初生重、断奶重、180日龄体重和70~180日龄日增重均显著高于0世代(P<0.05)。选育结果表明,晋汾白猪的生长发育性状取得了较大的遗传进展。  相似文献   

9.
Residual feed intake (RFI) is a measure of feed efficiency defined as the difference between the observed feed intake and that predicted from the average requirements for growth and maintenance. The objective of this study was to evaluate the response in a selection experiment consisting of a line selected for low RFI and a random control line and to estimate the genetic parameters for RFI and related production and carcass traits. Beginning with random allocation of purebred Yorkshire littermates, in each generation, electronically measured ADFI, ADG, and ultrasound backfat (BF) were evaluated during a approximately 40- to approximately 115-kg of BW test period on approximately 90 boars from first parity and approximately 90 gilts from second parity sows of the low RFI line. After evaluation of first parity boars, approximately 12 boars and approximately 70 gilts from the low RFI line were selected to produce approximately 50 litters for the next generation. Approximately 30 control line litters were produced by random selection and mating. Selection was on EBV for RFI from an animal model analysis of ADFI, with on-test group and sex (fixed), pen within group and litter (random), and covariates for interactions of on- and off-test BW, on-test age, ADG, and BF with generations. The RFI explained 34% of phenotypic variation in ADFI. After 4 generations of selection, estimates of heritability for RFI, ADFI, ADG, feed efficiency (FE, which is the reciprocal of the feed conversion ratio and equals ADG/ ADFI), and ultrasound-predicted BF, LM area (LMA), and intramuscular fat (IMF) were 0.29, 0.51, 0.42, 0.17, 0.68, 0.57, and 0.28, respectively; predicted responses based on average EBV in the low RFI line were -114, -202, and -39 g/d for RFI (= 0.9 phenotypic SD), ADFI (0.9 SD), and ADG (0.4 SD), respectively, and 1.56% for FE (0.5 SD), -0.37 mm for BF (0.1 SD), 0.35 cm(2) for LMA (0.1 SD), and -0.10% for IMF (0.3 SD). Direct phenotypic comparison of the low RFI and control lines based on 92 low RFI and 76 control gilts from the second parity of generation 4 showed that selection had significantly decreased RFI by 96 g/d (P = 0.002) and ADFI by 165 g/d (P < 0.0001). The low RFI line also had 33 g/d lower ADG (P = 0.022), 1.36% greater FE (P = 0.09), and 1.99 mm less BF (P = 0.013). There was not a significant difference in LMA and other carcass traits, including subjective marbling score, despite a large observed difference in ultrasound-predicted IMF (-1.05% with P < 0.0001). In conclusion, RFI is a heritable trait, and selection for low RFI has significantly decreased the feed required for a given rate of growth and backfat.  相似文献   

10.
Our objective was to estimate responses in growth and carcass traits in the NE Index line (I) that was selected for 19 generations for increased litter size. Differences between Line I and the randomly selected control line (C) were estimated in pure line litters and in F1 and three-way cross litters produced by mating I and C females with males of unrelated lines. Contrasts of means were used to estimate the genetic difference between I and C and interactions of line differences with mating type. In Exp 1, 694 gilts that were retained for breeding, including 538 I and C and 156 F1 gilts from I and C dams mated with Danbred NA Landrace (L) sires, were evaluated. Direct genetic effects of I and C did not differ for backfat (BF) at 88.2 kg or days to 88.2 kg; however, I pigs had 1.58 cm2 smaller LM area than did C pigs (P < 0.05). Averaged over crosses, F1 gilts had 0.34 cm less BF, 4.29 cm2 greater LM area, and 31 d less to 88.2 kg than did pure line gilts (P < 0.05). In Exp 2, barrows and gilts were individually penned for feed intake recording from 27 to 113 kg and slaughtered. A total of 43 I and C pigs, 77 F1 pigs produced from pure line females mated with either L or Danbred NA 3/4 Duroc, 1/4 Hampshire boars (T), and 76 three-way cross pigs produced from F1 females mated with T boars were used. Direct genetic effects of I and C did not differ for ADFI, ADG, G:F, days to 113 kg, BF, LM area, ultimate pH of the LM, LM Minolta L* score, or percentage of carcass lean. Interactions of line effects with crossing system were significant only for days to 113 kg. Pure line I pigs took 4.58+/-4.00 d more to reach 113 kg than did C pigs, whereas I cross F1 pigs reached 113 kg in 6.70+/-3.95 d less than C cross F1 pigs. Three-way cross and F1 pigs did not differ significantly for most traits, but the average crossbred pig consumed more feed (0.23+/-0.04 kg/d), gained more BW per unit of feed consumed (0.052+/-0.005 kg/kg), grew faster (0.20+/-0.016 kg/d), had less BF (-0.89+/-0.089 cm), greater LM area (5.74+/-0.926 cm2), more lean (6.21+/-0.90%), and higher L* score (5.27+/-1.377) than the average pure line pig did (P < 0.05). Nineteen generations of selection for increased litter size produced few correlated responses in growth and carcass traits, indicating these traits are largely genetically independent of litter size, ovulation rate, and embryonic survival.  相似文献   

11.
Accurate evaluations of growth and composition traits enable better management decisions regarding genetic merit, feeding, and marketing. Sires from Duroc and Pietrain populations were used to produce crossbred pigs, which were evaluated for growth and composition traits. All parents were normal for the ryanodine receptor gene. Boars from each breed were mated to either Yorkshire or F1 Yorkshire-Landrace females with 307 offspring evaluated from birth through 26 wk of age. No significant differences between sire breeds were seen for pig BW from birth through 10 wk of age. Body weight, 10th rib backfat (BF10), last rib backfat (LRF), and loin muscle area (LMA) were serially measured at 10, 13, 16, 19, 22, 24, and 26 wk of age. At 26 wk of age, Duroc-sired progeny were heavier (143.4 vs. 132.7 kg, P < 0.001), had more BF10 (27.1 vs. 23.7 mm, P < 0.001) and LRF (21.2 vs. 19.2 mm, P < 0.001), but had similar LMA (46.4 vs. 47.1 cm2) compared with Pietrain-sired progeny. Mean feed efficiency did not differ between breed of sire in any period of the study. Duroc progeny had a greater ADG (980.1 vs. 892.3 g/d, P < 0.001) from 10 to 26 wk of age than Pietrain-sired pigs. Composition traits of fat-free total lean (FFTOLN), total fat tissue (TOFAT), empty body protein (EBPRO), and empty body lipid (EBLIPID) were calculated. Random regression animal models with polynomial regression on week on-test were fitted to BW, BF10, LRF, LMA, FFTOLN, TOFAT, EBPRO, and EBLIPID from 10 to 26 wk of age. Duroc-sired barrows tended to grow faster but with more fat tissue, and Pietrain-sired gilts were slower growing but leaner, whereas Duroc-sired gilts and Pietrain-sired barrows were intermediate for growth and backfat measures. Serial heritability estimates generally increased from 10 to 26 wk of age with ranges as follows: BW (0.05 to 0.39), BF10 (0.13 to 0.76), LRF (0.11 to 0.79), LMA (0.05 to 0.73), FFTOLN (0.07 to 0.16), TOFAT (0.19 to 0.45), EBPRO (0.02 to 0.55), and EBLIPID (0.12 to 0.60). Pigs sired by Duroc and Pietrain boars had similar lean tissue growth but achieved it through different mechanisms.  相似文献   

12.
Twelve different mating types among the Hampshire and Landrace breeds were used to determine direct, maternal, heterosis, and recombination effects for performance and carcass traits. Mating types used were two purebred, two F1, two F2, two F3, and four backcross. Carcass data were collected on 238 barrows and 262 gilts over four replications. Traits measured were length (LENG), 10th rib off midline backfat (BF10), longissimus muscle area (LMA), and dressing percentage (DRS%). Average backfat (AVBF) was calculated as the mean of three midline fat depths measured opposite the first rib, last rib, and last lumbar vertebra. The model used to evaluate the carcass traits included main effects of mating type, farrowing season, and sex and included slaughter weight as a covariate. The performance traits of ADG, feed efficiency (FE), daily feed consumption (DFC), lean gain per day (LNGN), and lean efficiency (LNEF) were measured on a pen basis. Comparisons of reciprocal F1 crosses showed that carcasses from pigs sired by Hampshire boars were leaner and had more LMA than those sired by Landrace boars. Heterosis percentages were significant for AVBF (7.2%; P less than .01), BF10 (8.8%; P less than .01), DRS% (1.5%; P less than .01), ADG (11.5%; P less than .01), DFC (10.2%; P less than .01), LNGN (10.6%; P less than .01), and LNEF (6.0%; P less than .05). Epistatic recombination losses in the offspring were significant for LENG (3.6 cm; P less than .05) and approached significance for BF10 (6.1 mm; P less than .10).  相似文献   

13.
Records for pigs included in an experiment on reciprocal recurrent selection conducted from 1956 through 1971 at the USDA Beltsville Agriculture Research Center were analyzed to obtain estimates of heritabilities and genetic correlations and to derive prediction equations for estimating weight of lean cuts (WTLC) and percentage of lean cuts of shrunk slaughter weight (LCPC). Lean cuts growth rate (LCGR) was then estimated as WTLC/age of pig at slaughter. The base population consisted of two unrelated crossbred strains. A total of 1,294 records of F1 and F2 crossbred pigs were analyzed with one barrow and one gilt from each litter. Estimates of heritabilities and genetic correlations were computed with sire components of variance and covariance from a nested analysis of variance with an assumed model of years, strain-lines within years, sire within strain-lines, dams within sires and residual. Degrees of freedom were 307 for sires in strain-lines, 270 for dams in sires and 646 for residual. Heritability (h2) estimates were .42 +/- .13, .41 +/- .13 and .27 +/- .18 for WTLC, LCPC and LCGR, respectively, and .71 +/- .16, .38 +/- .13, .31 +/- .13 and .25 +/- .15 for carcass length, average backfat thickness, longissimus muscle area and ADG in BW, respectively. These estimates were apparently the first published genetic estimates involving LCGR based on carcass data. It was recommended that prediction equations to estimate WTLC, LCPC and LCGR for use in swine testing programs be derived from current meat-type pigs.  相似文献   

14.
A study was conducted to evaluate differences in performance and in carcass composition and tissue deposition rates between purebred Duroc pigs sired by boars currently available and those sired by boars from the mid-1980s. Two lines were developed by randomly allocating littermate and half-sib pairs of females to matings by current time period (CTP) or old time period (OTP) boars. Pigs from 2 replications were placed on test at a group mean BW of 63.5 kg. Serial ultrasonic measurements of the 10th-rib LM area (LMA), off-midline backfat (BF10), and intramuscular fat percentage (IMF) were collected every 2 wk in the first replication and used to assess deposition rate differences. Off-test ultrasonic LMA, BF10, and IMF measurements from a total of 557 pigs from 23 CTP sires and 232 pigs from 15 OTP sires across 2 replications and at a mean BW of 109 kg were evaluated. All available barrows and randomly selected gilts (n = 277) were sent to a commercial abattoir, and carcass measurements of 10th-rib backfat, last-rib backfat, last lumbar backfat, and LMA were collected. Analysis of serial backfat measurements revealed a linear relationship between back-fat and BW between 73 and 118 kg for pigs from both time periods. Pigs sired by OTP boars deposited more backfat (P < 0.05) at a faster rate than pigs sired by CTP boars over the entire test period. A curvilinear cumulative tissue deposition pattern was revealed for ultrasonically estimated LMA and IMF within both time periods. Significant linear and quadratic regression coefficient differences between lines indicated that pigs sired by CTP boars deposited more LMA and less IMF per kilogram of BW gain than pigs sired by OTP boars. Pigs sired by CTP boars had more LMA and less BF10 (P < 0.05), whereas pigs sired by OTP boars had more IMF (P = 0.04). Carcass evaluation revealed more (P < 0.01) carcass measurements of LMA and less (P < 0.05) carcass measurements of 10th-rib backfat, carcass measurements of last-rib backfat, and carcass measurements of last lumbar backfat for pigs sired by CTP boars. No difference (P > 0.05) between the time periods was found for ADG over the entire test period. Results from this study illustrate that significant progress in carcass composition has been realized within the Duroc breed since the mid-1980s. The long-term selection response in carcass leanness has also resulted in changes in deposition rates of correlated traits such as LMA and IMF.  相似文献   

15.
The objective of this study was to evaluate the effect of development diet on first-parity reproductive performance across different genetic types of females. Gilts (n = 708) 8 to 15 d of age from five genetic lines were assembled using a segregated early weaning protocol. Genetic types represented industry variation for reproductive capacity and lean growth potential. Sampling procedures were not designed to evaluate performance differences among the genetic lines. When the gilts weighed approximately 20 kg, they were moved from the nursery facilities to a slotted-floor, environmentally controlled facility, and seven to eight animals within a genetic type were penned together. When the gilts weighed approximately 40 kg, they were moved to a modified open-front facility. Nineteen gilts were allotted to each pen (.92 m2 per pig). Gilts were assigned to one of three development diets at 120 d of age. Diet 1 (high energy, 18% CP) and Diet 2 (high energy, 13% CP) were provided for ad libitum consumption to the assigned gilts until they weighed approximately 113 kg. Gilts receiving Diet 3 (23% CP) were fed 1.8 kg/d from 82 kg until they reached 180 d of age (approximately 100 kg). Gilts were fed 2 kg daily of a gestation diet from 180 d to 200 d of age and 2.7 kg daily from 200 d until mating. To stimulate the estrus cycle, gilts were commingled and exposed to vasectomized boars beginning at 180 d of age. Gilts that were in estrus and 210 d of age or older were artificially inseminated with commercial semen. Gilts not detected in estrus within the first 50 d of observation were injected with PG600 and estrus detection continued for 30 additional days. Of the 657 gilts entering breeding pens, 422 farrowed. Bred gilts were distributed to 10 cooperator facilities before farrowing. Mixed model procedures were used to analyze the data. Significant (P < .05) genetic type x gilt development diet interactions were found for number of pigs born, number of pigs born alive, total litter birth weight, and litter birth weight of pigs born alive. Significant interactions consistently involved one genetic line and gilt development Diets 1 and 2. Gilts from this genetic line-diet subclass had poorer farrowing performance (P < .05) than gilts from the same line fed development Diet 3. Only two other significant genetic line x gilt development diet interactions were found. Gilt development diet had little influence on first-parity reproductive performance.  相似文献   

16.
Genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive per year (LBAY), lifetime number of piglets weaned per year (LPWY), lifetime litter birth weight per year (LBWY) and lifetime litter weaning weight per year (LWWY) were estimated using phenotypic records of 3085 sows collected from 1989 to 2013 in a commercial swine farm in Northern Thailand. The five‐trait animal model included the fixed effects of first farrowing year‐season, breed group and age at first farrowing. Random effects were animal and residual. Heritability estimates ranged from 0.04 ± 0.02 for LBWY to 0.17 ± 0.04 for LPL. Genetic correlations ranged from 0.66 ± 0.14 between LPL and LBAY to 0.95 ± 0.02 between LPWY and LWWY. Spearman rank correlations among estimated breeding values for LPL and lifetime production efficiency traits tended to be higher for boars than for sows. Sire genetic trends were negative and significant for all traits, except for LPWY. Dam genetic trends were positive and significant for all traits. Sow genetic trends were mostly positive and significant only for LPWY and LBWY. Improvement of LPL and lifetime production efficiency traits will require these traits to be included in the selection indexes used to choose replacement boars and gilts in this population.  相似文献   

17.
Record of performance data taken on Yorkshire pigs on-farm in 123 breeder herds and at a central test station were used to estimate genetic correlations between measures of backfat depth and days to 90 kg on boars at the test station and boars and gilts on-farm. The data involved records on 3,513 station-tested boars, 13,760 farm-tested boars and 28,203 farm-tested gilts from 838, 2,098 and 2,339 sires, respectively. For backfat depth, estimates of genetic correlations were .85 for test station and on-farm boars and 1.04 for test station boars and on-farm gilts. Estimates of genetic correlations between test station and on-farm measures of days to 90 kg were .80 for boars and .74 for boars and gilts. Based on these results, selection of boars on the basis of test station performance for backfat and growth rate would be expected to result in genetic improvement on-farm in both sexes under North American testing and management conditions.  相似文献   

18.
Data from 80 first-litter purebred and crossbred gilts of Duroc and Landrace breeding were analyzed to determine the effects of traits associated with their udder on the sizes and weights of their litters at 21 and 42 d. Traits measured on each first-litter gilt included: number of teats in front of the navel; number of functional teats; number of inverted and pin nipples; length of the underline; body length and weight at parturition. When the litter size nursed at 1 d was held constant, litter size at 21 and 42 d was not influenced by number of teats in front of the navel, number of functional teats, number of inverted nipples, number of pin nipples, body length or weight at parturition. First litter gilts with shorter underlines tended to raise larger litters at 21 and 42 d (P less than .05). Litter weights at 21 and 42 d were not affected by the number of teats in front of the navel, number of functional teats, number of inverted nipples, or by the number of pin nipples when the size and weight of the litters born alive were held constant. First-litter gilts with shorter body lengths tended to have heavier litters at 21 d, (P less than .05) while those with shorter underlines (P less than .05) and those that weighed more at parturition (P less than .10) tended to have heavier litters at 42 d. Results from this study are interpreted to indicate a replacement-gilt selection program that applies selection pressure for only increased teat number and against teat abnormalities seems unwarranted.  相似文献   

19.
Data were collected from 1,245 Duroc boars and 527 Yorkshire boars. This represents 128 Duroc and 57 Yorkshire sires. Body weights, testis length and combined testes width at 140 and 168 d were obtained. Of these boars, 432 were castrated at a later age to evaluate relationships between in situ measures and excised testis traits. Heritabilities for testis length, width and volume at 140 d ranged from .16 to .25 in both Duroc and Yorkshire data. Heritabilities for testis measurements at 168 d ranged from .16 to .36 in both data sets. Favorable negative genetic relationships were found between in situ testis measures and age to 104 kg and backfat adjusted to 104 kg. Correlations among in situ measurements were high and positive. All excised testicular traits were highly heritable except for right epididymis weight and excised testis width. Correlation estimates among excised testis traits were generally positive. Phenotypic and genetic correlation estimates between live (in situ testis and growth performance traits) measurements and excised testis traits were generally favorable. This study suggests that in situ testis measurements should be good predictors of sperm production. It also suggests that selection for testis size should not be antagonistic to selection for growth performance traits.  相似文献   

20.
A 2-yr study compared progeny performance of high (HI) and low (LI) indexing central test station boars purchased in Iowa, Missouri, Nebraska and Oklahoma. Boars were evaluated for a National Swine Improvement Federation index recommended for central test stations. The 1st yr 22 Hampshire boars were mated to three- and four-breed Duroc, Yorkshire, Landrace and Spotted cross gilts. A disease outbreak the first farrowing season caused severe death loss and reduced performance. From 198 litters, 826 pigs completed their gain test. The 2nd yr 23 Duroc boars were mated randomly to gilts produced the previous year. From 181 litters, 1,070 pigs completed their gain test. No differences existed for postweaning average daily gain (ADG) and probe backfat thickness (PBF); however, progeny sired by HI Hampshire boars were an average of 5.66 units better for the index (I) compared with progeny of LI Hampshire boars. Gilt progeny of HI Duroc boars were .03 kg, .79 mm and 3.93 units greater for ADG, PBF and I, respectively, than LI Duroc-sired gilts. Barrow progeny of LI Duroc boars gained .01 kg/d faster, had .59 mm more PBF and were no different for I than barrows sired by HI Duroc boars. Maternal grandsire effects were important for Duroc-sired pigs, with gilts of HI maternal grandsires having .01 kg faster ADG, yet barrows of HI maternal grandsires had .02 kg slower ADG as compared with gilts and barrows having LI maternal grandsires, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号