首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from about 2900 litters (approximately 40,000 piglets) originating from 1063 Czech Large White hyperprolific sows were analyzed. The phenotypic and genetic relations between litter size traits, piglet mortality during farrowing and from birth to weaning and several statistics referring to the distribution of the birth weight within litter were analyzed. All genetic parameters were estimated from multi-trait animal models including the following factors: mating type (natural service or insemination), parity, linear and quadratic regression on age at first farrowing (1st litter) or farrowing interval (2nd and subsequent litters), herd-year-season effect and additive-genetic effect of the sow. The phenotypic correlations of the mean birth weight with the total number of piglets born and piglets born alive were − 0.30. Traits describing the variability of the birth weight within litter (range, variance, standard deviation, coefficient of variation) were mostly positively correlated with litter size. A statistically significant phenotypic correlation (− 0.09 to − 0.15) between mean birth weight and losses at birth and from birth to weaning was found. The heritability for the number of piglets born, piglets born alive and piglets weaned was around 0.15. The number of stillborn piglets had only a very low heritability less than 0.05, whereas the heritability for losses from birth to weaning was 0.13. The heritabilities of the mean, minimal and maximal birth weight were 0.16, 0.10 and 0.10, respectively. The heritability for all statistics and measures referring to the variability of the birth weight within litter was very low and did never exceed the value of 0.05. An increase in litter size was shown to be genetically connected with a decrease in the mean piglet birth weight and an increase in the within-litter variability of birth weight. Selection on litter size should be accompanied by selection on mortality traits and/or birth-weight traits. Losses from birth to weaning and the minimal birth weight in the litter were proposed as potential traits for a selection against piglet mortality.  相似文献   

2.
We estimated genetic parameters in Landrace and Large White pig populations for litter traits at farrowing (total number born, number born alive, number stillborn, total litter weight at birth (LWB), and mean litter weight at birth) and those at weaning (litter size at weaning (LSW), total litter weight at weaning (LWW), mean litter weight at weaning (MWW), and survival rate from farrowing to weaning). We analyzed 65,579 records at farrowing and 6,306 at weaning for Landrace, and 52,557 and 5,360, respectively, for Large White. Single‐trait and two‐trait repeatability animal models were exploited to estimate heritability and genetic correlation respectively. Heritability estimates of LSW were 0.09 for Landrace and 0.08 for Large White. Genetic correlations of LSW with MWW were –0.43 for Landrace and –0.24 for Large White. Genetic correlations of LSW with LWW and LWB ranged from 0.5 to 0.6. The genetic correlation of MWW with LWW was positive, but that with LWB was negligible. The results indicate that utilizing LWW or LWB could improve LSW efficiently, despite the antagonistic genetic correlation between LSW and MWW.  相似文献   

3.
The objective of this study was to estimate genetic associations of prolificacy traits with other traits under selection in the Finnish Landrace and Large White populations. The prolificacy traits evaluated were total number of piglets born, number of stillborn piglets, piglet mortality during suckling, age at first farrowing, and first farrowing interval. Genetic correlations were estimated with two performance traits (ADG and feed:gain ratio), with two carcass traits (lean percent and fat percent), with four meat quality traits (pH and L* values in longissimus dorsi and semimembranosus muscles), and with two leg conformation traits (overall leg action and buck-kneed forelegs). The data contained prolificacy information on 12,525 and 10,511 sows in the Finnish litter recording scheme and station testing records on 10,372 and 9,838 pigs in Landrace and Large White breeds, respectively. The genetic correlations were estimated by the restricted maximum likelihood method. The most substantial correlations were found between age at first farrowing and lean percent (0.19 in Landrace and 0.27 in Large White), and fat percent (-0.26 in Landrace and -0.18 in Large White), and between number of stillborn piglets and ADG (-0.38 in Landrace and -0.25 in Large White) and feed:gain (0.27 in Landrace and 0.12 in Large White). The correlations are indicative of the benefits of superior growth for piglets already at birth. Similarly, the correlations indicate that age at first farrowing is increasing owing to selection for carcass lean content. There was also clear favorable correlation between performance traits and piglet mortality from birth to weaning in Large White (r(g) was -0.43 between piglet mortality and ADG, and 0.42 between piglet mortality and feed:gain), but not in Landrace (corresponding correlations were 0.26 and -0.22). There was a general tendency that prolificacy traits were favorably correlated with performance traits, and unfavorably with carcass lean and fat percents, whereas there were no clear associations between prolificacy and meat quality or leg conformation. In conclusion, accuracy of estimated breeding values may be improved by accounting for genetic associations between prolificacy, carcass, and performance traits in a multitrait analysis.  相似文献   

4.
Genetic parameters were estimated for six reproductive traits related to farrowing events in Landrace and Large White pigs; total number born (TNB), number born alive (NBA), number stillborn (NSB), total litter weight at birth (LWB), mean litter weight at birth (MWB), and gestation length (GL). We analyzed 62,534 farrowing records for 10,637 Landrace dams and 49,817 farrowing records for 8,649 Large White dams. Estimated heritabilities of TNB, NBA, NSB, LWB, MWB, and GL by single‐trait repeatability model analyses were 0.12, 0.12, 0.08, 0.18, 0.19, and 0.29, respectively, in Landrace, and 0.12, 0.10, 0.08, 0.18, 0.16, and 0.34, respectively, in Large White. Genetic correlation between NBA and NSB was unfavorable: 0.20 in Landrace and 0.33 in Large White. Genetic correlations of GL with the other five traits were weak: from ?0.18 with NSB to ?0.03 with NBA in Landrace, and from ?0.22 with NSB to ?0.07 with NBA in Large White. LWB had a highly favorable genetic correlation with NBA (0.74 in both breeds), indicating the possibility of using LWB for the genetic improvement of NBA.  相似文献   

5.
Genetics of different pig lines affects litter size, birth weight, and neonatal losses. Low birth weight has long been associated with neonatal losses, but piglet body mass index is reported to show stronger correlation with stillbirth. The aim of this study was to investigate differences in litter size, number of stillborn piglets, piglet BW gain, and body mass index between 2 different Duroc crossbred lines. Landrace × Yorkshire sows in 2 farms (n = 89) were divided into 2 groups on each farm. One group of sows on each farm was inseminated with semen from Landrace × Duroc boars (boar group LD, n = 48), and the other was inseminated with semen from purebred Duroc boars (boar group DD, n = 41). Piglets were monitored from birth to weaning at the age of 5 wk. Litter size in boar group LD was larger than in boar group DD (P = 0.03). Number of stillborn piglets in boar group LD tended to be greater than in boar group DD (P = 0.07). Piglets in boar group DD had a greater BW at birth (P = 0.02) and at 3 wk (P = 0.01) than those in boar group LD. Body mass index from birth to weaning was greater in piglets in boar group DD vs. LD (P < 0.01), and both BW and body mass index of liveborn piglets at birth for both groups combined showed a positive correlation with survival at weaning (P < 0.01). In conclusion, breeding for larger litter size in boar group DD may be one approach to increase the number of vigorous piglets in production, but the inverse relationship between litter size and birth weight was more pronounced for this group than for boar group LD (P = 0.03). Further studies of the impact of litter size on BW gain are necessary before a final conclusion can be reached.  相似文献   

6.
The primary objective of this study was to determine if certain behavior traits were genetically correlated with reproduction. If 1 or both of the behavior traits were found to be correlated, a secondary objective was to determine if the behavior traits could be useful in selecting for more productive females. A scale activity score taken at 5 mo of age and a farrowing disposition score taken at farrowing were selected as the behavioral traits. Scale activity score ranged from 1 to 5 and farrowing disposition ranged from 1 to 3. Reproductive traits included age at puberty, number born alive, number born dead, litter birth weight, average piglet birth weight, number weaned, litter weaning weight, average weaning weight, wean-to-estrus interval, ovulation rate including gilts, and postweaning ovulation rate. Genetic correlations between scale activity score and reproduction ranged from -0.79 to 0.61. Three of the correlations, number born alive (P < 0.01), average piglet birth weight (P < 0.001), and wean-to-estrus interval (P = 0.014), were statistically significant but included both favorable and antagonistic correlations. In contrast, all but 1 of the farrowing disposition correlations was favorable and ranged from -0.66 to 0.67. Although only the correlation with litter birth weight was significant (P = 0.018), the consistent favorable direction of all farrowing disposition correlations, except average weaning weight, shows a potential for inclusion of farrowing disposition into a selection program.  相似文献   

7.
Genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive per year (LBAY), lifetime number of piglets weaned per year (LPWY), lifetime litter birth weight per year (LBWY) and lifetime litter weaning weight per year (LWWY) were estimated using phenotypic records of 3085 sows collected from 1989 to 2013 in a commercial swine farm in Northern Thailand. The five‐trait animal model included the fixed effects of first farrowing year‐season, breed group and age at first farrowing. Random effects were animal and residual. Heritability estimates ranged from 0.04 ± 0.02 for LBWY to 0.17 ± 0.04 for LPL. Genetic correlations ranged from 0.66 ± 0.14 between LPL and LBAY to 0.95 ± 0.02 between LPWY and LWWY. Spearman rank correlations among estimated breeding values for LPL and lifetime production efficiency traits tended to be higher for boars than for sows. Sire genetic trends were negative and significant for all traits, except for LPWY. Dam genetic trends were positive and significant for all traits. Sow genetic trends were mostly positive and significant only for LPWY and LBWY. Improvement of LPL and lifetime production efficiency traits will require these traits to be included in the selection indexes used to choose replacement boars and gilts in this population.  相似文献   

8.
Variance components (VC) were estimated for the semen production trait ejaculate volume, sperm concentration and sperm motility in the Swiss cattle breeds Brown Swiss (BS), Original Braunvieh (OB), Holstein (HO), Red‐Factor‐Carrier (RF), Red Holstein (RH), Swiss Fleckvieh (SF) and Simmental (SI). For this purpose, semen production traits from 2,617 bulls with 124,492 records were used. The data were collected in the years 2000–2012. The model for genetic parameter estimation across all breeds included the fixed effects age of bull at collection, year of collection, month of collection, number of collection per bull and day, interval between consecutive collections, semen collector, bull breed as well as a random additive genetic component and a permanent environmental effect. The same model without a fixed breed effect was used to estimate VC and repeatabilities separately for each of the breeds BS, HO, RH, SF and SI. Estimated heritabilities across all breeds were 0.42, 0.25 and 0.09 for ejaculate volume, sperm concentration and sperm motility, respectively. Different heritabilities were estimated for ejaculate volume (0.42; 0.45; 0.49; 0.40; 0.10), sperm concentration (0.34; 0.30; 0.20; 0.07; 0.23) and number of semen portions (0.18; 0.30; 0.04; 0.14; 0.04) in BS, HO, RH, SF and SI breed, respectively. The phenotypic and genetic correlations across all breeds between ejaculate volume and sperm concentration were negative (?0.28; ?0.56). The other correlations across all breeds were positive. The phenotypic and genetic correlations were 0.01 and 0.19 between sperm motility and ejaculate volume, respectively. Between sperm motility and sperm concentration, the phenotypic and genetic correlations were 0.20 and 0.36, respectively. The results are consistent with other analyses and show that genetic improvement through selection is possible in bull semen production traits.  相似文献   

9.
Genetic parameters and trends in the average daily gain (ADG), backfat thickness (BF), loin muscle area (LMA), lean percentage (LP), and age at 90 kg (D90) were estimated for populations of Landrace and Yorkshire pigs. Additionally, the correlations between these production traits and litter traits were estimated. Litter traits included total born (TB) and number born alive (NBA). The data used for this study were obtained from eight farms during 1999 to 2016. Analyses were carried out with a multivariate animal model to estimate genetic parameters for production traits while bivariate analyses were performed to estimate the correlations between production and litter traits. The heritability estimates were 0.52 and 0.43 for ADG; 0.54 and 0.45 for BF; 0.25 and 0.26 for LMA; 0.54 and 0.48 for LP; and 0.56 and 0.46 for D90 in the Landrace and Yorkshire breeds, respectively. The ADG and D90 showed low genetic correlation with BF and LP. The LMA had ?0.40, ?0.32, 0.49, and 0.39 genetic correlations with ADG, BF, LP, and D90, respectively. Genetic correlations between production and litter traits were generally low, except for the correlations between LMA and TB (?0.23) in Landrace and ADG and TB (?0.16), ADG and NBA (?0.18), D90 and TB (0.19), and D90 and NBA (0.20) in Yorkshire. Genetic trends in production traits were all favorable except for LMA.  相似文献   

10.
The increased productivity of sows increases the risk of a more pronounced negative energy balance during lactation. One possibility to prevent this is to increase the lactation efficiency (LE) genetically and thereby increase milk output for a given feed intake and mobilization of body tissue. The benefits of selection for LE depend on its heritability and the relationships with other traits of interest. The objectives of this study were to estimate genetic parameters for LE, its underlying traits, and to predict the consequences of current selection strategies in dam lines. Data from 4 farms were available to estimate genetic parameters. Heritabilities were estimated by using a univariate repeatability model, and genetic correlations were estimated bivariately. Selection index theory was used to predict the genetic progress by 3 alternative breeding programs: 1) a breeding program that aimed at balanced progress in the total number of piglets born, piglet mortality, and percent prolonged interval from weaning to estrus; 2) extension of this breeding goal with LE; and 3) a breeding goal that included only one selection criterion, litter weight gain, to demonstrate the effect of indirect selection for milk production. The heritability for LE was low (0.12). Body fat mass (0.52) and BW (0.45) of sows at the beginning of lactation showed the greatest heritabilities. Protein mass at the beginning of lactation, protein loss, weight loss, and ad libitum feed intake during lactation showed moderate heritabilities (0.39, 0.21, 0.20, and 0.30, respectively). Low to moderate heritabilities were found for litter weight at birth, within-litter SD in the birth weight of piglets, litter weight gain, fat loss, and restricted feed intake during lactation (0.19, 0.09, 0.18, 0.05, and 0.14, respectively). Within-litter SD in the weaning weight of piglets showed no genetic variability. It was predicted that a breeding goal for dam lines with an emphasis on the total number of piglets born, piglet mortality, and percent prolonged interval from weaning to estrus would not dramatically change BW or body composition at the beginning of lactation, or mobilization of body tissue and feed intake during lactation. Inclusion of LE in the breeding goal will improve stayability, as defined by the first-litter survival of sows and LE itself, without negative consequences for other economically important traits. Nevertheless, it might be worthwhile to design a breeding goal in which LE increases and feed intake remains unchanged.  相似文献   

11.
Mass selection for an index of increased postweaning average daily gain and decreased backfat thickness was practiced for five generations. Litter size and weight for 221 gilt litters, birth weight and nipple number for 2,242 piglets and weaning weight at 42 d of age for 2,111 pigs were recorded. Carcass measurements were taken on 331 pigs. Differences between means of the lines (select control) were regressed on cumulative selection differential of the index. These regression coefficients were negative (P greater than .10) for total number born, number born alive, number weaned per litter, nipple number and carcass backfat thickness. Coefficients were positive (P greater than .10) for individual pig and litter weights at birth and weaning and for the carcass traits of length, longissimus muscle area and percentage of ham and loin. Absolute values of realized genetic correlations of index with traits evaluated were all .35 or less except the correlation with carcass backfat, which was -.84. None of these was significant; therefore, index selection for lean growth should have little effect on litter size and weight but may have a beneficial effect on carcass backfat.  相似文献   

12.
Different floor space allowances for dry, pregnant sows in pens were evaluated to determine the impacts of space on sow performance, productivity, and body lesions during 2 consecutive farrowings. Treatment groups of 5 sows/pen were assigned to 1.4, 2.3, or 3.3 m(2) of floor space/sow or of 5 sows in individual stalls (1.34 m(2)). The experiment consisted of 6 replications (blocks 1 to 6), and within each block measurements were recorded for 2 consecutive pregnancies and farrowings. A total of 152 sows were measured at 1 farrowing, and 65 of those sows were measured at the successive farrowing (n = 217 records). Performance traits were BCS, BW, backfat (BF), days until rebred, and proportion culled. Litter traits were number of piglets born alive, male:female ratio, and proportions of stillborn, mummified, or dead piglets after birth. Litter performance measures were mean piglet BW and gain and litter BW. Lesion scores were assessed for several body regions. There were treatment and parity effects and interactions for several traits. An interaction of space treatment and parity occurred for sow mean BW, d-110 BW, BF, litter size, and litter and piglet BW and gain, with most effects in parity 2, 3, and 4 sows. Space affected sow mean (P < 0.001) and d-110 BW (P < 0.05) and mean BF and adjusted BF (P < 0.001); sows in pens at 相似文献   

13.
Heritabilities and genetic correlations for different prolificacy traits were estimated to assess possibilities of selection for high number of piglets weaned. Three litter-size traits: total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets weaned (NW); four piglet survival traits: number of stillborn piglets (NSB), percent of stillborn piglets (NSB%), piglet mortality between birth and weaning (PM), percent of dead piglets during suckling (PM%); and three traits measuring time intervals: age at first farrowing (AFF), first farrowing interval (FFI), and gestation length (GL) were analysed. The Finnish national litter recording scheme provided data on the first parity litters of 11 329 Landrace and 8 362 Large White pigs born between 1986 and 2000. The heritabilitiy estimates were moderate for AFF and GL (0.24–0.37), and low for all the other traits (0.03–0.11). The genetic correlations between TNB and PM (0.68 in Landrace and 0.43 in Large White) and between NBA and PM (0.64 in Landrace and 0.31 in Large White) suggest that selection only for high TNB or NBA will lead to increased PM. The results showed further that GL will increase indirectly if the selection pressure is for low PM (r g =?0.050 in Landrace and ?0.43 in Large White.  相似文献   

14.
撒坝猪繁殖性状的表型和遗传参数分析   总被引:6,自引:1,他引:5  
对 6个世代共 2 31头撒坝母猪的繁殖性能数据资料进行了分析。在建立混合线性模型的基础上 ,采用HARVEY程序估计了总产仔数、活产仔数、初生窝重、 2 0日龄窝重、 60日龄断奶仔数和断奶窝重等 6个繁殖性状的表型和遗传参数。结果表明 ,撒坝猪繁殖性能在选育过程中有一定程度的提高 ,但速度平缓 ;上述 6个性状的遗传力分别为 0 0 37,0 0 75,0 1 1 1 ,0 1 55 ,0 1 0 3和 0 31 0 ,多为低遗传力性状 ;各性状间的遗传相关介于 0 532~ 0 773之间 ,表型相关和环境相关分别在 0 30 3~ 0 946和 0 442~ 0 972之间  相似文献   

15.
Genetic parameters of piglet survival traits and birth weight were estimated on the first generation data of a selection experiment aimed at improving piglet survival using a multiple trait linear and threshold model. Data on 5293 piglets for survival at birth, at day one after birth and during the entire nursing period, as well as individual birth weight and litter size, were recorded in an outdoor production system. Genetic effects of piglet survival traits and birth weight were estimated based on threshold and Gaussian models, respectively, using a Bayesian approach. The statistical model included as fixed effects selection group, parity, gender, fostering, gestation length and month of farrowing and, alternatively, an adjustment for litter size. Direct genetic effects (i.e. the piglet's genetic potential) for piglet survival and birth weight were estimated separately, whereas maternal genetic and environmental effects could only be estimated for the given data structure in a combined litter effect. Posterior means of heritabilities for direct genetic effects of survival at birth, at first day after birth and the entire nursing period, as well as birth weight, were 0.08, 0.07, 0.08 and 0.20, respectively. Genetic correlations among survival traits were in the range of 0.29 to 0.40 and indicate that these traits were mainly attributable to different genetic effects. Genetic correlations between direct effects of survival traits and birth weight ranged between 0.18 and 0.23 and were reduced when weights of stillborn piglets were omitted in the analysis or the traits were adjusted for litter size. The magnitudes of direct genetic effects of survival traits are substantially higher than estimates in the literature, which may indicate that these traits have a higher genetic influence under outdoor conditions. The use of birth weight in the multiple trait estimation provided important information for the estimation of survival traits due to its favourable genetic correlations with survival, its high heritability and its high information content as a continuously measured trait.  相似文献   

16.
The objective of this study was to obtain heritability estimates for longevity (length of life, length of productive life, number of litters) and lifetime productivity traits (lifetime pig production, lifetime pig efficiency, lifetime litter efficiency) and genetic correlation between them and litter size at first farrowing, growth (ADG), backfat thickness (BF), loin depth, lean meat percentage (LMP), phenotypic selection index (PSI), and exterior in 19423 Polish Landrace (L) and 16049 Polish Large White (LW) sows. Heritabilities for longevity and lifetime productivity traits were 0.10–0.13 for L sows and 0.09–0.11 for LW sows depending on the trait definition. The genetic correlations among these traits were all high and positive, ranging from 0.76 to 0.99. Antagonistic genetic correlations (?0.21 to ?0.26) were found between longevity traits and PSI and LMP in LW sows, while in L sows the respective parameters were lower and not significant for length of productive life. The number of live‐born piglets in the first litter was positively correlated with lifetime pig production and lifetime pig efficiency in both breeds. The genetic correlations of longevity and lifetime pig production with ADG, BF, loin depth and exterior were small, and in most cases, not significant.  相似文献   

17.
Genetic correlations between reproduction and production traits were estimated in swine. Reproduction traits investigated were age at first service (AFS), number of live-born piglets in the first litter (NBA1), interval from weaning to first service after first litter (WTS1), number of live-born piglets in the second litter (NBA2), and interval from weaning to first service after the second litter (WTS2). Females generating the data were Norwegian Landrace born in nucleus herds between 1990 and 2000, and the number of records ranged from 13,792 to 56,932. Genetic correlations were estimated among the main production traits in the breeding goal: adjusted age at 100 kg live weight (A100), percentage of lean meat content (LMC), individual feed consumption from 25 to 100 kg (FC), and bacon side quality (BSQ). Average adjusted backfat thickness (BF) was included as a production trait. The A100 and BF traits were recorded on gilts on-farm with 190,454 records, whereas LMC, BSQ, and FC were recorded on-station with the number of records ranging from 12,487 to 12,992. Analyses were carried out with a multivariate animal model using average information restricted maximum likelihood procedures by first running each reproduction trait with A100 and BF, followed by each reproduction trait with LMC, BSQ, and FC. Average heritabilities for reproduction traits were as follows: AFS (0.38), NBA1 (0.11), WTS1 (0.06), NBA2 (0.12), and WTS2 (0.03); and for production traits: A100 (0.30), BF (0.44), FC (0.22), LMC (0.58), and BSQ (0.23). The highest genetic correlation was estimated between A100 and AFS (r(g)= 0.68), also resulting in a positive genetic correlation between FC and AFS. Growth (A100) was negatively (i.e., unfavorably) genetically correlated to NBA1 and NBA2 (r(g) = 0.60 and rg = 0.42 respectively), and so the genetic correlation to FC also became unfavorable (r(g)= 0.23 and r(g) = 0.20). Single-trait selection for enhanced LMC would also affect NBA1 and NBA2 unfavorably (r(g)= -0.12 and r(g)= -0.24). Correlations between BF at 100 kg live weight and reproduction traits were close to zero; however, a low genetic correlation between BF and WTS1 was obtained (r(g)= -0.12), indicating that selection toward reduced BF at 100 kg live weight may have an unfavorable impact on WTS1.  相似文献   

18.
本试验旨在探讨母猪妊娠末期背膘厚度对产仔性能和胎盘脂质氧化代谢的影响,以探索母猪妊娠期脂肪沉积与繁殖性能的关系。本试验度量了846头经产大白母猪妊娠第109天时的背膘厚度,并分为3组,背膘厚度≤18 mm的为第1组(母猪192头),背膘厚度为19~22 mm的为第2组(母猪265头),背膘厚度≥23 mm的为第3组(母猪389头)。记录母猪分娩后的产仔性能,测定胎盘组织中脂质、氧化产物水平及抗氧化酶活性。结果表明:1)尽管母猪妊娠末期背膘厚度对总产仔数、产活仔数及木乃伊数无显著影响(P0.05),但显著影响了死胎数、初生窝重、初生头重和胎盘效率(P0.05)。其中,第2组的初生头重、初生窝重及胎盘效率显著高于其他2组(P0.05);第2组的死胎数显著低于第1组(P0.05),与第3组差异不显著(P0.05)。值得注意的是,母猪妊娠末期背膘厚度显著影响每窝初生重≤0.9 kg的仔猪数和每窝初生重≤1.0 kg的仔猪数(P0.05),第3组的每窝初生重≤0.9 kg的仔猪数和每窝初生重≤1.0 kg的仔猪数均显著高于其他2组(P0.05)。2)在第3组的胎盘组织中,不仅甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)及游离脂肪酸(FFA)的水平显著高于其他2组(P0.05),而且丙二醛(MDA)和活性氧(ROS)水平也显著高于其他2组(P0.05),同时超氧化物歧化酶(SOD)活性显著低于其他2组(P0.05)。3)妊娠末期母猪胎盘组织中ROS水平与总产仔数、初生窝重及胎盘效率呈显著负相关(P0.05),而MDA水平与总产仔数呈显著负相关(P0.05)。由此可知,母猪妊娠末期背膘厚度与产仔性能密切相关。妊娠末期维持背膘厚度在19~22 mm,母猪可获得较高的产仔性能;背膘厚度≤18 mm时,会增加死胎数;而背膘厚度≥23 mm时,会引起胎盘组织中脂质过度沉积,从而加剧胎盘氧化应激的发生。  相似文献   

19.
为优化母猪繁殖效率,探究妊娠期不同背膘厚对母猪繁殖性能和分娩产程的影响,本研究以广西某公司2 969头大白母猪和1 787头长白母猪为试验群体,收集2017年1月至2017年10月妊娠期3个阶段(妊娠30、80和107 d)背膘厚与分娩接产记录数据,分析背膘厚与分娩产程、总产仔数、产活仔数和初生窝重等性状的关系。研究结果表明,大白母猪分娩产程时间显著短于长白母猪(P<0.05),大白母猪总产仔数、产活仔数和初生窝重显著优于长白母猪(P<0.05)。在妊娠30 d时,背膘厚在18~20 mm组的大白母猪总产仔数和产活仔数最高,且初生窝重最大;背膘厚在18~20 mm组的长白母猪总产仔数和产活仔数最高。在妊娠80 d时,背膘厚≥20 mm组的大白母猪总产仔数和产活仔数最高,且初生窝重最大、产程最短;背膘厚在16~18 mm组的长白母猪总产仔数和产活仔数最高,且初生窝重较高、母猪产程较短。在妊娠107 d时,背膘厚在14~16 mm组的大白母猪总产仔数和产活仔数最高,且初生窝重最大,但母猪产程与其他组差异不显著(P>0.05);背膘厚≥20 mm组的长白母猪总产仔数和产活仔数最高,且初生窝重较大。妊娠期背膘厚减少1~2 mm的大白母猪,其总产仔数和产活仔数最高,初生窝重较小,产程较长。而背膘厚减少>2 mm的长白母猪,其总产仔数和产活仔数最高,初生窝重较大,产程较短。上述试验结果说明,在母猪妊娠期间,合适的背膘厚可有效提高母猪繁殖性能和母猪分娩期间的福利水平。养殖场可以根据营养配方和猪群品种建立背膘数据库,通过精准饲喂将母猪背膘厚调整至最佳范围,同时合理控制妊娠期背膘变化。  相似文献   

20.
撒坝猪乳头数遗传力及其与繁殖性能关系的研究   总被引:4,自引:0,他引:4  
本研究对 4个世代共 577头撒坝猪的乳头数进行了分析 ,并用HARVEY程序对乳头数的遗传力进行了估计 ,同时利用 1 2 8头有繁殖性能记录的母猪资料对乳头数与繁殖性状的关系进行了分析。结果表明 ,各世代的乳头数存在着显著差异 ,且逐代均有显著提高 ;乳头数的遗传力为 0 .331 ;乳头数与总产仔数和活产仔数间遗传相关和表型相关均为负值 ,与初生窝重、2 0日窝重、断奶仔数和断奶窝重间则存在着正的遗传相关和表型相关 ;乳头数与所有繁殖性状的环境相关都较弱 ( -0 .0 0 2~ 0 .0 94 )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号