首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of partial cutting on tree size structure and stand growth were evaluated in 52 plots in 13 stands in southeast Alaska that were partially harvested 53–96 years ago and compared with 50-year-old even-aged stands that developed after clearcutting. The net basal-area growth was greater in the partially cut plots than in the uncut plots, and basal-area growth generally increased with increasing cutting intensity. However, the basal-area growth of all of the partially harvested stands was significantly less than the growth of 50-year-old even-aged stands, and net basal area growth over the 50 year period since partial harvesting was about 33–43% of the growth of the even-aged stands. Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effect on tree species composition. The tree size distribution of the partially harvested stands was far more complex and well distributed in comparison with the 50-year-old even-aged stands, and included the presence of several trees with diameters of more than 100 cm. These trees included both large-diameter spruce and hemlock trees and were a distinctive structural feature that was noticeably lacking in the even-aged stands.  相似文献   

2.
Different methodological approaches from the field of spatial statistics, the index of cluster size (ICS) and quadrat methods such as the two-term and three-term local quadrat variance (TTLQV and 3TLQV) and the new local variance (NLV) were tested to find a simple spatial measure to classify mixed coniferous uneven-aged, even-aged and conversion stands in the central Black Forest area of Germany. Altogether six stands were analysed with regularly distributed sample plots of 0.25 ha (50×50 m), each subdivided into 25 quadrats of 10×10 m. In each of the quadrats, diameter at breast height (dbh) for trees of the overstory (dbh>7 cm) was assessed and classified into three diameter classes. Height measurements were used to develop specific stand height curves for each stand and to calculate the standing volume per tree and per quadrat. The even-aged stands showed a regular distribution of the standing volume, while the conversion and uneven-aged stands were more clustered. This was detected using ICS, which proved to be a simple but very efficient measure for stand structure. The ICS also showed a highly random distribution of small and medium trees and a regular distribution of large trees of the overstory in the uneven-aged stand. Large and medium trees of one even-aged stand were also regularly distributed while conversion stands showed a regular, random or slightly clustered distribution of these trees. The more uneven the ages in the stands were, the larger were the phases detected by the NLV. The findings of the ICS were generally supported by the TTLQV and 3TLQV. The more uneven the ages in a stand were, the less clustered were the trees of different sizes of the understory. Clustering also decreased with increasing height of understory trees. The patterns detected in the investigated stands were related to the effect of different management regimes. Implications for the management of conversions stands based on the findings of the study are given.  相似文献   

3.
We studied the effects of two types of selective thinning on beech stands formed by a shelterwood cut in 1910 — with lower number of crop trees and higher thinning intensity (T1) and higher number of crop trees with lower thinning intensity (T2). The stands were thinned in 1980, 1991 and 2001. Despite a lower stand density after thinning, the annual basal area increments of thinned stands in both thinning periods (1980–1991 and 1991–2002) were around 20% higher compared to those of the control (unthinned) stands. The mean annual basal area increment of dominant trees was 30–56% larger in the thinned plots compared to the control plots. Of 176 initial crop trees in the T1, 72% were chosen again during the last thinning. In the T2, 258 crop trees were chosen in the first thinning, and only 62% of these trees were chosen again during the last thinning. Only crown suppression and diameter classes of crop trees significantly influenced their basal area increment when diameter classes, crown size, crown suppression, and social status were tested. In the thinned stands, the dominant trees are more uniformly distributed if compared to the dominant trees in the control plots. Finally, the herbaceous cover and the species diversity were higher in the thinned plots.  相似文献   

4.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


5.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

6.
Crown form, vertical changes in branch inclination and vertical distribution of foliage density in a young sugi (Crytomeria japonica D. Don) stand were analyzed using allometric equations. Tall trees had deeper crowns than short trees, whereas the crown diameters of both tall and short trees were similar. Apical roundness was more pronounced in the lower-story trees, which were characterized by umbrella-shaped crowns. The vertical distribution of foliage density was approximated by a nearly symmetrical curve. Tall trees had higher spatial densities of foliage than short trees. Branch inclination also varied significantly with tree height. The middle-story trees had the largest branch inclinations and the lower-story trees had the smallest branch inclinations. Even in young uniform stands, crown morphology and structure were modified in response to the light environment.  相似文献   

7.
Growth and yield models were developed for individual tress and stands based on336 temporary plots with 405 stem analysis trees of dahurian larch(Larix gmelinii(Rupr.)Rupr.)plantations throughout Daxing’anling mountains.Several equations were selected using nonlinearregression analysis.Results showed that the Richards equation was the best model for estimatingtree height,stand mean helght and stand dominant height from age; The Power equation was thebest model for prediction tree volume from DBH and tree height; The logarithmic stand volumeequation was good for predicting stand volume from age,mean height,basal area and other standvariables.These models can be used to construct the volume table, the site index table and other for-estry tables for dahurian larch plantations.  相似文献   

8.
Fiora A  Cescatti A 《Tree physiology》2006,26(9):1217-1225
Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.  相似文献   

9.
We studied relations between natural seedling reproduction and above ground environment in a longleaf pine ecosystem. Forty-eight 0.05 ha circular plots were sampled under single-tree selection, group-tree selection and control stands in three main longleaf pine areas in south Alabama, USA. We measured six above-ground environment factors, viz. canopy closure, stand density, basal area, average tree height, understory cover and PAR under canopy. We employed forward, back-ward and stepwise selection regression to produce one model. Three main variables:canopy closure, stand density and basal area, were left in the model; light, PAR and understory cover were not incorporated into the model at the 0.10 significance level. Basal area was a positive pa-rameter, while canopy closure and stand density were negative parame-ters. Canopy closure was the main parameter in the model. The model proved to be meaningful, and has potential to provide useful guidance for future work.  相似文献   

10.
This study aims to estimate stand density and stand volume in Cryptomeria japonica and Chamaecyparis obtusa stands from high-resolution satellite data and verify the reliability and uncertainty of the data. Sixty circular sample plots of 0.04 ha each were established. Their stand densities were estimated from the number of tree crowns derived from high-resolution satellite data using the watershed method. Stand densities derived from field surveys in the sample plots were compared with those obtained from high-resolution satellite data by stand age class. As a result, there was a positive correlation between them for sample plots of 41 years of age and over (R = 0.82); however, there was no correlation between them for sample plots of 40 years and under. Individual diameters at breast height (DBH) were estimated from crown areas obtained from high-resolution satellite data for the two species. Using the estimated DBH, individual tree heights were predicted from the height–diameter curves. Stand volumes were estimated from the sum of individual volumes, which were derived from volume formulas having two variables, i.e., DBH and height. Stand volumes derived from the field survey were compared with those obtained from high-resolution satellite data. The correlation coefficient between them for stands of 41 years of age and over was 0.78.  相似文献   

11.
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.  相似文献   

12.
Interior Douglas-fir trees in plantations were assessed for size differences related to the level of diseased neighbours infected with Armillaria ostoyae. The four Douglas-fir stands studied ranged from 25- to 34-year-old, and represented the oldest accessible planted stands in the Interior Cedar Hemlock (ICH) ecosystem in British Columbia. Twenty-three to 25, 10-m radius plots were established in each stand. The spatial coordinates, total height, and diameter at breast height of all live and dead trees in the plots were recorded. Subject trees whose competitors were contained in the 10-m radius plots were also identified. Trees were pulled out of the soil using a mechanical excavator and the root systems were surveyed for evidence of infection by A. ostoyae. Stem disks were taken from each tree at 1.3 m above the ground for a determination of basal area. Increasing proportion of diseased trees in the plots resulted in less total plot basal area, but did not affect the mean basal area or height. Individual subject tree basal area was negatively related to the level of disease in surrounding competitors, opposite to expectations; however, diseased subject trees had reduced height and basal area compared to disease-free subject trees. Increasing competition reduced both the height and basal area of the trees, while regular distribution of all trees increased both total and mean plot basal area but not height. Disease incidence at the plot level and in individual subject trees was mainly affected by the neighbourhood conditions in which it grew, and was also related to disease intensity in the tree root systems. Although disease may alter resource partitioning among trees, the utilization of these resources is mostly limited by the increasing disease incidence as the stands age, the higher probability of larger trees being diseased with time, the occurrence of dead trees in clumps, and the high probability that dead trees will eventually infect live neighbours. The widespread belowground incidence of A. ostoyae in the ICH, its rapid colonization of stumps, and its wide host range can reduce site potential in managed stands.  相似文献   

13.
The mixed hardwood forests of North Alabama and adjacent states contain stands of varied specks composition and stand structure, with much variation associated with the presence of Eastern redcedar (Juniperus viginiana L.) within the stands. This study quantified the composition of 44 stands within these forests with discriminate analysis, cluster analysis and tree area ratio modeling. Little variation in the presence of specific species was found on plots with Eastern redcedar when compared to plots without this species, but the number of individuals and their portion of the total stand structure did vary between the two types of stands. Twenty-seven species were grouped into six clusters, with associated species differing between plots with and without eastern redcedar. Eastern redcedar sites did appear to reflect lower productivity, with the trees smaller in diameter and shorter in height. Additional stand structure information is also discussed.  相似文献   

14.

The mean tree height of 73 forest stands in a 1000 ha forest area was determined from canopy heights generated by automatic image matching using a digital photogrammetric workstation and digitized panchromatic aerial photographs with a scale of 1:15 000. First, the mean height of each stand was computed as the arithmetic mean of the quantile corresponding to the 75th percentile of the distribution of the canopy heights from the image matching within square grid cells with cell sizes of 236-400 m2. The mean heights from the image matching underestimated the true heights by 5.42 m. Secondly, field-measured mean tree heights of 165 georeferenced sample plots distributed systematically throughout the 1000 ha forest area were regressed against the mean heights derived from the image matching. The regression equations were used to predict the mean heights of the 73 stands. In very young forest stands, the predicted mean heights overestimated the true heights by 0.4 m and the precision was 0.9-1.0 m. In young and mature stands, the average difference between predicted height and ground-truth ranged between -1.6 and 0.5 m, and the precision ranged from 1.1 to 2.1 m.  相似文献   

15.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

16.
In native stands of Eucalyptus delegatensis R. T. Baker, sapwood area (As) to foliage area (Af) ratios (As:Af) decreased as tree height increased, contradicting the common interpretation of the Pipe Model Theory as well as the generally observed trend of increasing As:Af ratios with tree height. To clarify this relationship, we estimated sapwood hydraulic conductivity theoretically based on measurements of sapwood vessel diameters and Poiseuille's law for fluid flow through pipes. Despite the observed decrease in As:Af ratios with tree height, leaf specific conductivity increased with total tree height, largely as a result of an increase in the specific conductivity of sapwood. This observation supports the proposition that the stem's ability to supply foliage with water must increase as trees grow taller, to compensate for the increased hydraulic path length. The results presented here highlight the importance of measuring sapwood hydraulic conductivity in analyses of sapwood-foliage interactions, and suggest that measurements of sapwood hydraulic conductivity may help to resolve conflicting observations of how As:Af ratios change as trees grow taller.  相似文献   

17.
The strategy of using advanced layering for regenerating logged black spruce stands has become a common practice. Compared with natural post-fire black spruce stands, this strategy may alter stand structure with a possible change in stand productivity. Using harvested tree data from sample plots established in burned and logged stands, 50 years after disturbance, and on similar soils, we compared the structure, height growth, and biomass allocation of both types of stands. Stem analysis revealed that black spruce trees in logged stands reached their maximum height growth later and at a concomitant lower level than black spruce trees in burned stands. Biomass production was comparable between stand types but was reduced when ericaceous shrubs were abundant. Compared to natural post-fire stands, logged stands present a shift of biomass allocation to branches and to leaves. These mechanisms are interdependent and represent the tree adjustment to the altered structure in logged stands characterised by the fragmented canopy with the increase of ericaceous shrubs cover and of organic layer thickness.  相似文献   

18.
Thinning of Korean pine (Pinus koraiensis Sieb. et Zucc.) is used to facilitate timber and cone production. The present study in Northeast China investigated the effects of thinning intensity on individual tree growth, temporal variation in cone yield, and seed quality in Korean pine plantation. In 2005, five thinning intensity levels (none, extreme, heavy, moderate and light) were set in 15 permanent plots in a 32-year-old Korean pine plantation at Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province. We recorded tree growth and seed cone production from 2013 to 2016, i.e., from 8 to 11 years after thinning. Except for height growth, thinning increased tree growth (diameter at breast height and crown size) and improved cone yield. The extreme thinning treatment (to 300 trees per hectare) resulted in the largest tree diameter, tree volume, crown size and 4-year cone production per tree. The highest cone yield per tree in the mast year (2014) was observed when stands were thinned to 500 trees per hectare (heavy thinning). Although the best cone and seed quality and the largest cone and seed mass per tree were recorded in the heavily thinned stand, no significant differences were found between heavy and moderate thinning stands (750 trees per hectare). At the stand level, the moderately thinned stand had the highest basal area, stock volume and seed cone production per stand. Our results suggest that thinning to 750 trees per hectare will improve timber and cone productivity in 40-year-old P. koraiensis stands.  相似文献   

19.
The study developed models for predicting the post-fire tree survival in Catalonia. The models are appropriate for forest planning purposes. Two types of models were developed: a stand-level model to predict the degree of damage caused by a forest fire, and tree-level models to predict the probability of a tree to survive a forest fire. The models were based on forest inventory and fire data. The inventory data on forest stands were obtained from the second (1989–1990) and third (2000–2001) Spanish national forest inventories, and the fire data consisted of the perimeters of forest fires larger than 20 ha that occurred in Catalonia between the 2nd and 3rd measurement of the inventory plots. The models were based on easily measurable forest characteristics, and they permit the forest manager to predict the effect of stand structure and species composition on the expected damage. According to the stand level fire damage model, the relative damage decreases when the stand basal area or mean tree diameter increases. Conversely, the relative stand damage increases when there is a large variation in tree size, when the stand is located on a steep slope, and when it is dominated by pine. According to the tree level survival models, trees in stands with a high basal area, a large mean tree size and a small variability in tree diameters have a high survival probability. Large trees in dominant positions have the highest probability of surviving a fire. Another result of the study is the exceptionally good post-fire survival ability of Pinus pinea and Quercus suber.  相似文献   

20.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号