首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of pollen selection as part of the breeding efforts to increase chilling tolerance in chickpea was investigated. This alternative approach to apply selection pressure at the gametophytic stage in the life cycle has been proposed widely, but there are no reports of the technique being implemented in a crop improvement program. In this paper, we describe how we developed a practical pollen selection technique useful for chickpea improvement.Pollen selection improved chilling tolerance in crossbreds compared with the parental chickpea genotypes and compared with progeny derived without pollen selection. This is backed up by controlled environment assessments in growth rooms and by field studies. We also clearly demonstrate that chilling tolerant pollen wins the race to fertilise the ovule at low temperature, using flower color as a morphological marker. Overall, pollen selection results in a lower threshold temperature for podding, which leads to pod setting two to four weeks earlier in the short season Mediterranean-type environments of Western Australia. Field testing at multiple sites across Australia, as part of the national crop variety testing program, shows that these breeding lines have a significant advantage in cool dryland environments.The major factors which affected the success of pollen selection are discussed in the paper, from generation of variability in the pollen to a means to recover hybrids and integration of our basic research with an applied breeding program. We conclude that chilling tolerance observed in the field over successive generations are the result of pollen selection during early generations.  相似文献   

2.
Summary Three thousand two hundred and sixty-seven kabuli chickpea (Cicer arietinum L.) germplasm accessions were grown during the spring season of 1980 at Tel Hadya, the main research station of ICARDA, Syria to determine the components of seed yield. Observations were recorded on seed yield and 14 other characters. Correlation and path coefficient analyses were done to find out associations among characters and to assess the direct and indirect contribution of each character to seed yield.Large variation was observed for all the characters studied except days to flowering, days to maturity and protein content. Correlation and path coefficient analyses showed that biological yield and harvest index were the major direct contributors to seed yield. The 100-seed weight, plant height, days to flowering and maturity, canopy width, and protein content contributed to seed yield mainly through indirect effect via biological yield and harvest index. The 100-seed weight and seed yield were major contributors to biological yield. Major contributor to protein content was days to maturity. Results indicated that selection for high biological yield and harvest index would lead to high seed yield; and selection for large seed size would lead to high biological yield. Therefore, these characters should receive the highest priority in selecting high yielding plants in chickpea breeding.  相似文献   

3.
E. J. Knights 《Euphytica》1993,69(3):163-166
Summary A spontaneous fasciated mutant was detected in the chickpea cv. Amethyst. It was characterised by broad, strap-like stems, irregular leaf arrangement and clustering of pods towards the stem apices. F2 and F3 segregations showed that fasciation was controlled by a single, recessive gene for which the symbol fas is proposed. Field trials comparing the fasciated mutant with its non-fasciated isoline showed that fasciation was associated with lower yield, larger seeds, delayed flowering and increased lodging.  相似文献   

4.
R. S. Malhotra  K. B. Singh 《Euphytica》1989,40(1-2):169-172
Summary Triple test cross-analysis was used to detect epistasis in chickpea. None of the characters investigated exhibited epistasis. In the absence of epistasis, additive and dominance effects were estimated. The results indicated the importance of additive genetic variance for seed yield, biological yield, number of primary branches, number of secondary branches, 100-seed weight, days to flower, and number of seeds per pod; dominance genetic variance for days to mature; and both additive and dominance genetic variances for plant height. Selection methods, such as pedigree and bulk, are suggested for the improvement of most characters.Joint contribution from ICARDA, P.O. Box 5466, Aleppo, Syria and ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Patancheru P.O. 502 324, A.P., India.  相似文献   

5.
Summary A giabrous mutant was identified from progenies of chickpea seeds that were treated with ethyl methane sulphonate (EMS). The mutant has no shoot hairs in contrast to the dense hairs on normal chickpeas. The character is governed by a single recessive gene. This mutant can be useful in certain pathological and eniomological studies.  相似文献   

6.
Summary A macro-mutant, E 100Y(M) in chickpea (Cicer arietinum L.) was found to affect several plant and seed characters. For plant type monogenic inheritance was observed. A single pair of recessive genes pt/pt was ascribed to this mutant. The mutant locus seemed to be exerting pleiotropic action. The utilization of this mutant for chickpea improvement has been discussed.  相似文献   

7.
Summary The character of determinate plant growth has not been reported for chickpea and has not been observed in the world germplasm collection at ICRISAT, Patancheru, India. A determinate growth habit would be desirable where growing conditions often lead to excessive vegetative growth. We attempted to generate this trait by mutation breeding. Seeds of the cultivar ICCV 6 were exposed to varying irradiation treatments, M1 and M2 populations were raised, and in the latter one plant was detected that showed the determinate growth habit and female sterility. The character of determinate growth segregated in a postulated digenic epistatic 3:13 fashion in the F2 and confirmed its digenic mode of inheritance in the F3 and F4. The symbol cd is proposed for the allele conditioning for determinancy and Dt for the allele expressing the determinate trait. Continued mutation breeding with this and other material may result in identifying fully fertile, determinate plant types.Abbreviations DT - determinate - IDT - indeterminate ICRISAT Journal Article No. 1396.  相似文献   

8.
Summary Genetics for speed of plumule emergence was studied using six generations (P1, P2, F1, BC1(P1), BC2(P2) and F2) in three crosses. Two of the crosses which had parents of different emergence speed were controlled by two genes with duplicate epistasis. The third cross which involved parents of little difference for speed, indicated incomplete dominance for one gene of bit fast parent over the slow one. In all the crosses F2 segregation pattern was confirmed by the segregation pattern of back crosses. The gene symbols were designated as Sp1Sp1 Sp2Sp2 for fast speed parents: sp1sp1 sp2sp2 for slow parent and sp1sp1 Sp2Sp2 for the parent with bit fastness for speed of plumule emergence.  相似文献   

9.
Summary Cicer echinospermum, a wild relative of chickpea (Cicer arietinum L.), has traits that can be used to improve the cultivated species. It is possible to obtain successful crosses between the two species, even though their cross progenies have reduced fertility. The reasons for this low fertility could be due to the two species differing in small chromosome segments or at genic level. Another limitation to the use ofC. echinospermum at ICRISAT Asia Center is that the species is not adapted to the short photoperiod which prevails during the chickpea cropping season at Patancheru, Andhra Pradesh, India. Future work will include screening the segregating progenies for monitoring traits from both the species through isozyme analysis and to incorporate these into good agronomic backgrounds following backcrosses.Submitted as JA 1669 by ICRISAT  相似文献   

10.
Twenty two RAPD and 22 ISSR markers were evaluated for their potential use in determination of genetic relationships in chickpea (Cicer arietinum L.) cultivars and breeding lines. We were able to identify six chickpea cultivars/breeding lines by cultivar-specific markers. All of the cultivars tested displayed a different phenotype generated either by the RAPD or ISSR primers. Though ISSR primers generated less markers than RAPD primers, the ISSR primers produced higher levels of polymorphism (% of polymorphic markers per primer) than RAPD primers. A high level of within cultivar homogeneity was observed in chickpea. Cultivars/breeding lines originating from a common genetic background showed closer genetic relationship. Chickpea lines with similar seed type(kabuli or desi) had a tendency to cluster together. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
S. K. Dey  Gurdip Singh 《Euphytica》1993,68(1-2):147-153
Summary Genetic regulation of host resistance in chickpea-Ascochyta rabiei interaction system is governed by two dominant complementary genes each in the genotypes GLG 84038 and GL 84099, whereas the resistance in a black seeded genotype ICC 1468 was controlled by one dominant and one recessive independent gene. In all the genotypes, resistance is operated by inter-allelic interactions. The genes conferring resistance in GLG 84038 were found to be different to those operating in GL 84099 and ICC 1468. Among the five dominant genes dispersed in 3 genotypes under study, at least one has been reported for the first time, as to date, only three dominant genes have been reported in the literature.The four identified dominant genes in GLG 84038 and GL 84099 have been named as Arc1, Arc2 (in GLG 84038) and Arc3, Arc4 (in GL 84099). The undistinguished dominant gene in ICC 1468 has been named as Arc5(3,4) as it could not be equated or differentiated from Arc3 or Arc4. The recessive gene in ICC 1468 has been named as Arc1.Generation mean analysis of the 6 resistant × susceptible crosses involving the same genotypes, revealed that the genes conferring resistance in any of the 3 genotypes did not follow simple Mendelian inheritance but were influenced by inter allelic interactions. Additive gene effect along with dominance were operative in all the 3 genotypes under study in conferring resistance. However, the mechanism of resistance in GLG 84038 and GL 84099 were primarily additive in nature while that in ICC 1468, dominance as well as dominance × dominance interactions were more important than additive gene action.  相似文献   

12.
13.
14.
Thomas M. Davis 《Euphytica》1991,54(1):117-123
Summary The allelic and linkage relationships among five chickpea (Cicer arietinum L.) morphological markers were investigated. When crossed with purple-flowered line ICC 640 and with each other, white flowered variety UC5 and mutant line PM974 were shown to carry non-allelic, single recessive genes for white flower color, provisionally designated w1 and w2, respectively. The single recessive gene conferring simple leaves in mutant PM299 was allelic to the previously described slv gene carried by variety Surutato 77, line ICC 10301, and other simple leaf chickpea mutants. In mutant 756M, a filiform leaf trait was controlled by a single recessive gene, fil, which was non-allelic to slv.The fil and w2 genes were linked, with recombination frequencies of 0.05 and 0.14 estimated from results of coupling and repulsion phase crosses, respectively. fil and w1 segregated independently. Root nodulation gene rn3 was closely linked to slv: recombination frequencies of 0.05 and 0.11 were estimated from results of coupling and repulsion phase crosses, respectively. A loose linkage detected between the w2-fil and the rn3-slv linkage groups will be the subject of further scrutiny.  相似文献   

15.
Summary The chick pea germplasm collection maintained at ICRISAT Center, Patancheru, India, is the largest collection of this crop available in one place. This collection was grown in instalments and described for qualitative and agronomical traits. The importance and distribution of six qualitative traits, namely flower colour, plant colour, growth habit, seed shape, seed surface and seed colour have been discussed.Approved as J. A. No. 365 by the International Crops Research Institute for the Semi-Arid Tropics (ICRI-SAT).  相似文献   

16.
G. Ladizinsky  A. Adler 《Euphytica》1976,25(1):211-217
Summary Species relationship between the cultivated chickpea Cicer arietinum and the two newly discovered wild species C. echinospermum and C. reticulatum were assessed through breeding experiments and cytological examination of the hybrids.The two wild species differed from each other by a major reciprocal translocation and their hybrid was completely sterile. The wild species C. echinospermum also differed from the cultivated species by the same translocation and their hybrid was highly sterile. The other wild species, C' reticulatum, was crossed readily with the cultivated chickpea. Meiosis of the hybrids, involving 4 different C. arietinum lines, was normal, and they were fertile. This wild species therefore can be considered as the wild progenitor of the cultivated chickpea.  相似文献   

17.
Summary Commonly the chickpea leaf is uni-imparipinnate, having 9–15 leaflets. However, certain variants have been reported; these are available in the chickpea collection at ICRISAT and were re-examined. Based on the lamina differentiation, three major classes of leaf type can be recognized: uni-imparipinnate (normal), multipinnate and simple (leaf). (Certain other leaf forms reported earlier are not classes of leaf type though they are distinct variants). It was determined that the leaf type differences are governed by two genes (mlsl), which show supplementary gene action. The multipinnate leaf is formed when the first gene is dominant (ml+sl/.sl). Whereas the simple leaf occurs when the first gene is recessive and the second gene is in either form (ml./ml.), the normal leaf is expressed when both dominant genes are present (ml+sl+/..).Submitted as J.A. No. 814 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

18.
P.M. Gaur  V.K. Gour 《Euphytica》2002,128(2):231-235
Chickpea (Cicer arietinum L.) has a racemose type of inflorescence and at each axis of the raceme usually one or two and rarely three flowers are borne. Plants producing 3 to 9 flowers, arranged in acymose inflorescence, at many axis of the raceme, were identified in F2 of an interspecific cross ICC 5783 (C. arietinum) × ICCW 9 (C. reticulatum)in which both the parents involved were single-flowered. A spontaneous mutation in one of the two parents or in the F1was suspected. However, the possibility for establishment of a rare recombination of two interacting recessive genes could not be ruled out. The number of pods set varied from 0 to 5 in each cyme. Inheritance studies indicated that a single recessive gene, designated cym, is responsible for cymose inflorescence. The allelic relationship of cym with sfl, a gene for double-flowered trait, was studied from a cross involving multi flowered plants and the double-flowered line ICC 4929. Thecym gene was not allelic to sfl, suggesting that two loci control the number of flowers per peduncle in chickpea. The cym locus segregated independently of the locus sfl, ifc (inhibitor of flower color) and blv (bronze leave). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Germination of pollen grains and growth of pollen tubes were studied to determine the cause of barreness in crosses among annual Cicer species. In vivo and in vitro time-course studies and fluorescent microscopy revealed no pollination incompatibility among the selfs, crosses and reciprocals of C. arietinum L., C. reticulatum Lad. and C. cuneatum Rich. In general, Cicer pollen grains germinated and grew on styles of Cicer species. Pollen tube growth was characterized by irregularly spaced and intermittent callose deposits. Failure of seed formation in interspecific pollinations may be attributed to the slowness of pollen tube growth or collapse of fertilized ovules. In addition to these causes, shortness of stamens and sparsity of pollen grains were responsible for flower drop in natural selfs. Although the number of pollen tubes entering the micropyle in interspecific pollinations was low, it may be possible to grow the fertilized ovules on an artificial medium to obtain F1 plants.  相似文献   

20.
Summary Studies on genetic diversity in chickpea (Cicer arietinum L.) indicated the existence of considerable amount of variation for grain yield and its components in the material. One hundred and thirty two genotypes fell into eight clusters. The covariation structure studied by means of factor analysis indicated the possibility of obtaining, through hybridization, genotypes physiologically and morphologically more efficient. Multivariate analysis of data from 7 parents and 21 F1 hybrids indicated weak correspondence between D2-analysis and canonical variate analysis. As there was no relationship between heterosis over midparent and genetic distance between the parents, so the traditional approach of making a large number of crosses is being suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号