首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

2.
Biogas production generates digested slurry as a by-product. It can be used as fertilizer especially after its conversion into digested liquid. A microcosm-based study was conducted in order to compare the effects of single application of digested liquid or chemical fertilizer on N2O flux and crop yield of komatsuna vegetable. Analysis revealed that digested liquid-treated soils released almost equal cumulative N2O (0.43 g?N m?2) compared to chemical fertilizer (0.39 g?N m?2). The uncropped soils treated with the digested liquid and chemical fertilizer released more N2O compared to corresponding cropped soils. The N2O emission factor and soil mineral N contents were similar for the digested liquid and chemical fertilizer-treated soils. Plant biomass in the first crop after digested liquid application was significantly higher (5.59 g plant?1) than that after applied chemical fertilizer (4.78 g plant?1); but there was no significant difference for the second crop. Nitrogen agronomic efficiency was improved by the digested liquid compared to chemical fertilizer. This study indicates that cumulative N2O flux was similar after application of the digested liquid and chemical fertilizer, while the overall yield from both croppings was increased in the digested liquid-treated soil compared to chemical fertilizer-treated soil.  相似文献   

3.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

4.
The objective of the present study was to record the seed yield and to examine visually the quality of soybean seeds cultivated under different types and placements of urea fertilizers. In addition to the conventional fertilizer application (including ammonium sulfate 16 kg N ha-1 broadcasting (100 kg N ha-1 of urea (0B) and X00-d type coated urea CU-100 (CUB), and deep placement (100 kg N ha-1) of urea (UD) and 100-d type coated urea CU-100 (CUD) was conducted in separate plots in a paddy field converted to an upland field located at Shindori Experimental Station of Niigata University. Soybean plant growth was periodically analyzed and the quality of harvested seeds was also visually examined (hereafter referred to as “visual quality”). It was found that the deep placement treatments were more conducive 1o nitrogen (N2)fixation, based on the relative mreide N concentration in the xylem sap, which is a good indicator of N~fixation by soybean. Also the total seed yield was the highest in CUD (82 g plant-1) and 0D (81 g plant-1), compared to the control (62 g plant-1), UB (68 g plant-1), and CUB (68 g plant-1). The visual quality of harvested seeds showed that CUD enhanced the quality of seeds compared to the other treatments, in which the percentage of good quality seeds, hereafter referred to as "good seeds," based on the dry weight was 51 (control), 65 (K3B), 61 (CUB), 61 (0D), and 6696 (CUD). In terms of diseased seeds, the percentage of turtle wrinkle and broken seed coats was found to decrease by N application compared to the control. Thus, it is suggested that N fertilization management is important for maximum yield of soybean as well as for the enhancement of seed quality.  相似文献   

5.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

6.
A field experiment was conducted to study the effect of adding different phosphorus (P) fertilizer levels [0, 40, and 80 kg phosphorus pentoxide (P2O5) ha?1 (abbreviated as P0, P1, and P2, respectively)] and rates of sheep manure (M) [0, 20, and 40 ton ha?1 (abbreviated as M0, M1, and M2, respectively)] on growth and nitrogen (N2) fixation of soybean (Glycine max L.). Sorghum bicolor L. was employed as a reference crop to evaluate N2 fixation using the 15N-isotpic dilution technique. Results showed that addition of P fertilizer or sheep manure had positive effects on dry-matter production, N accumulation, and seed yield. Such effects were more pronounced when adding sheep manure and P together than adding separately. Solely P fertilizer had a small impact on N2 fixation. A tangible increase in the amounts of N2 fixed due to manure addition occurred. The efficient use of N fertilizer (%NUE) increased significantly as the result of adding a high level of P fertilizer. However, a drastic decrease in %NUE was observed when sheep manure was added solely or in combination with P fertilizer. From productivity and ecological standpoints, P2M1 and P2M2 surpassed the other treatments in showing greater grain yield and greater N2 fixation. However, considering the high cost of sheep manure, P2M1 was the optimal treatment for improving growth and N2 fixation in soybean plants with minimal manure consumption. In conclusion, the integrated use of manure and P fertilizer could be considered a useful agricultural practice for improving the performance of soybean plants grown in an Aridisol. Their beneficial effects were mainly attributed to the enhancement of N2 fixation through root growth and soil property improvements besides being a source of P and other nutrients that are essential for N2-fixation process.  相似文献   

7.
A pot trial with acid yellow-brown soil was conducted to investigate the effects of molybdenum (Mo) and phosphorus (P) fertilizers on cold resistances of winter wheat. Molybdenum was applied at two rates (0 and 0.15 mg Mo kg?1 soil) and P at four rates [0, 100, 200, and 300 mg phosphorus pentoxide (P2O5) kg?1 soil] in experiment 1. Both Mo and P fertilizers were applied at two rates (0 and 0.15 mg Mo kg?1 soil; 0, 150 mg P2O5 kg?1 soil) in experiment 2. Seed yield, soluble sugar, water-soluble protein, ascorbic acid (AsA), malondialdehyde (MDA), and abscisic acid (ABA) concentrations were studied. The results indicated that Mo and P fertilizer increased seed yield, soluble sugar, water-soluble protein, and AsA but decreased the MDA. It implied that appropriate Mo applied with P application had beneficial effects on increasing seed yield and enhancing the cold resistance ability through changing biological substances concentration in winter wheat.  相似文献   

8.
Abstract

A two-year field experiment was conducted to study PGP bacteria on growth and yield productivity of sesame. Factors were control, Nitroxin, Biophosphor, and an equal combination of biofertilizers along with sesame capsule type. 1000-seed weight and oil content increased in the second year, but, seed yield reduced (-12.6?g m2), which represented a negative relationship between seed weight and yield. The effect of year on No. of single and multi-cap node plant?1 was reversed. Seed yield, chlorophyll, protein, and N increased in the multi-cap seed, whereas, 1000-seed weight and seed weight plant?1 was decreased. Maximum yield and yield components were achieved in the second and first year, respectively, along with the multi-cap seed. Nitroxin, after the equal combination, was approximately showed the maximum enhancement of growth and yield productivity of sesame. The most seed yield (4261 k ha?1) was performed in the first year, combined biofertilizers and multi-cap seed, whereas, the highest oil content was gained in the second year and single-cap that it was due to the higher N and P use efficiency in the first year. No. of node plant?1 and capsule No. plant?1 showed the most correlation with the other parameters. Seed yield was correlated with No. of node plant?1 (r?=?0.925) and leaf dry weight (r?=?0.885). The N and P use efficiency had been higher in the first year, multi-cap, and equal combination. Nitrogen Use efficiency was higher compared to phosphorous. The uptake of N and P by sesame increased with the integrated application of different bacteria.  相似文献   

9.
ABSTRACT

We studied the effect of integrated nutrient management (INM) combinations on supplement of plant nutrient for quantitative and qualitative fruit production in sapota. Thus, 17 combinations of INM practices were evaluated on fruit yield of sapota and nutrient availability in a Vertisol of Chambal region, India. The results demonstrated that almost all treatment combinations comprised of recommended dose of fertilizer (RDF), i.e. 1,000:500:500 g NPK plant?1 with application of organic and inorganic sources of nutrients had a significant effect on the fruit yield of sapota, soil microbial biomass, NPK content of leaf, fruit and soil over control (T1). Among different treatments, application of 2/3rd part of RDF + 50 kg FYM + 250 g Azospirillum + 250 g Azotobacter plant?1 (T11) significantly enhanced the number of fruits plant?1 (327.88), yield plant?1 (29.03 kg) and yield ha?1 (4.52 t). However, the soil microbial count of fungi (8.89 cfu g?1 soil), bacteria (11.19 cfu g?1 soil) and actinomycetes (5.60 cfu g?1 soil) at fruit harvest was higher under the 2/3 of RDF +10 kg vermicompost + 250 g Azospirillum + 250 g Azotobacter plant?1 (T15). The leaf nitrogen content (N, 2.03%) was higher in T15, while phosphorus (P, 0.28%) and potassium (K, 1.80%) content were higher in T11. It is evident that treatment T11 increased fruit yield by 32% in Sapota cv. Kalipatti compared to control. Therefore, combined application of nutrient sources proved not only beneficial for enhancing fruit yield of sapota but also sustaining soil health in Chambal region of south-eastern Rajasthan.  相似文献   

10.
Influence of different phosphorus (P) sources on growth, yield and oil quality of linola was evaluated when randomized in complete block design using three replications. Treatments were control (No P), hydropriming, soil phosphorus (50 kg ha?1), seed inoculation with phosphate solubilizing bacteria (PSB, Bacillus spp.) and seed priming with single super phosphate (2%) alone and combined with reduced soil phosphorus (25 kg P ha?1). Among treatments, hydropriming and seed inoculation reduced seedling 50% and mean emergence time with highest emergence index, seedling fresh and dry weights and chlorophyll contents. Seed inoculation with soil P (25 kg ha?1) produced highest seeds per capsule, 100-seed weight, seed and biological yield, harvest index. Maximum oil percentage, low protein contents and high cost benefit ratio with net economic returns were also found for seed inoculation combined with soil phosphorus. Nonetheless, soil phosphorus application can be reduced when seed inoculation with PSB is employed.  相似文献   

11.
ABSTRACT

Grain yield in many soybean experiments fails to respond to fertilizer nitrogen (N). A few positive responses have been reported when soybean were grown in the southern U.S., when N was applied near flowering and when biosolids were added. In a previous study, low N concentrations of soybean forage in north Texas on a high pH calcareous soil were reported and thus, we suspected a N nutrition problem. Consequently, we initiated this study to determine whether selected preplant N sources broadcast and incorporated into a Houston Black clay (fine, smectitic, thermic Udic Haplusterts) might increase forage N concentration, forage yield, or soybean grain yield. In 2003, N was applied as ammonium nitrate (NH4NO3, AN) up to 112 kg N ha? 1 and dairy manure compost (DMC) was applied at rates of 4.9, 9.9, 15.0, and 19.9 Mg ha? 1. The DMC contained 5.9, 2.6, and 6.7 g kg? 1 of total N, P, and K, respectively; thus DMC added 29 to 116 kg N ha? 1. In 2004, AN was applied at rates of 112 and 224 kg N ha? 1 and DMC was applied at 28 and 57 Mg ha? 1; thus, DMC added 168 to 335 kg N ha? 1. In another 2004 test, biosolids, a biosolids/municipal yard waste compost mixture (BYWC), and AN were compared. The biosolids contained 31, 18, and 2.9 g kg? 1 total N, P, and K, respectively. The BYWC mixture contained 8.8, 6.1, and 3.4 g kg? 1 of total N, P, and K, respectively. Biosolids were applied at 10 Mg ha? 1 (310 kg N ha? 1), BYWC was applied at 58 Mg ha? 1 (510 kg N ha? 1), and AN up to 224 kg N ha? 1. None of the soil treatments increased soybean grain yield or forage yield although AN slightly increased forage N concentration in 2003.  相似文献   

12.
ABSTRACT

The feasibility of split (soil + foliar) applications of nitrogen (N) and phosphorus (P) and addition of a small quantity of sulfur (S) in the spray was tested for improving performance of rapeseed-mustard genotypes in a factorial randomized field experiment. Three genotypes (two erucic acid free, viz. Brassica napus L. cv. ‘Hyola PAC – 401’ and Brassica juncea L. Czern. and Coss. cv. ‘TERI (0E) M 21-Swarna’, and one best performing high yielding Brassica juncea L. cv. ‘Rohini’ as a check) were grown with four soil (B) plus foliar (F) applications of N, P, and S with uniform basal 30 kg potassium (K) ha? 1 (K30), viz. (i) the optimum soil-applied treatment supplemented with the spray of deionized water (BN90P30 + Fw) comprising control, (ii) BN70P30 + F N20, (iii) BN70P28 + FN20P2, and (iv) BN70P28 + FN20P2S2. Soil Plus foliar application of nutrients, particularly BN70P28 + FN20P2S2, improved their performance with respect to growth characteristics (shoot length plant? 1, leaf number plant? 1, area leaf? 1, leaf area index, fresh weight plant? 1, and dry weight plant? 1), physico-biochemical parameters (net photosynthetic rate, stomatal conductance, carboxylation efficiency, water use efficiency, carbonic anhydrase activity, leaf NPK content, and N use efficiency), yield attributes (pod number plant? 1, seed number pod? 1, 1000-seed weight, seed yield ha? 1, oil content, and oil yield ha? 1), and fatty acid composition in oil of these genotypes. The cultivar ‘Hyola PAC-401’ performed best particularly with BN70P28 + FN20P2S2. The improvement in the response of genotypes to the split application of nutrients may be attributed to their ready availability through foliar application.  相似文献   

13.
A field experiment was conducted to assess the effect of microbial inoculants and inorganic fertilizers for sustaining the yield of soybean. Application of 100% recommended dose of fertilizer (RDF) gave significantly highest yield (2433 kg ha?1) over 75% RDF (2317 kg ha?1) and without RDF (2205 kg ha?1). Seeds inoculated with Rhizobium (Bradyrhizobium japonicum) and phosphate-solubilizing bacteria (2480 kg ha?1) gave significantly highest soybean yield over without inoculation (2191 kg ha?1). Rhizobium and phosphate-solubilizing bacteria with 100% RDF (2674 kg ha?1) gave significantly highest seed yield than rest of the treatment combinations. Root nodules and their dry weight were remained un-influenced due to fertilizer levels, whereas in bio-fertilizers, it was significantly higher with Rhizobium inoculation (24.3 and 408 mg, respectively) followed by dual inoculation of Rhizobium and PSB. 100% RDF and dual inoculation with Rhizobium and PSB earned Rs. 47916/- and Rs. 51182/- net returns per ha, respectively.  相似文献   

14.
Non‐essential silicon (Si) is beneficial to plants. It increases the biomass of Si‐accumulator plants by improving photosynthetic activity and alleviating stresses. Desilication, however, takes place because of natural soil weathering and removal of harvested biomass. Pyrolysis transforms Si‐rich biomass into biochar that can be used to supply bioavailable Si. Here, we applied two biochar materials differing in Si content on soils differing in weathering stage: a young Cambisol and a highly weathered Nitisol. We studied the impact of biochar supply on the bioavailability of Si, cotton biomass, and Si mineralomass. The biochar materials derived from, respectively: Miscanthus × giganteus (Mi; 34.6 g Si kg?1 in biochar) and soft woody material (SW; 0.9 g Si kg?1 in biochar). They were compared to conventional Si fertilizer wollastonite (Wo; CaSiO3). Amendments were incorporated in soils at the rate of 3% (w/w). The content of bioavailable Si in soil was determined through 0.01 M CaCl2 extraction. In the Cambisol, the proportion (CaCl2 extractable Si: total Si content) was significantly smaller for Mi (0.9%) than for Wo (5.2%). In the Nitisol, this proportion was much larger for Mi (1.4%) than for Wo (0.7%). Mi‐biochar significantly increased Si‐mineralomass relatively to SW‐biochar in both soils. This increase was, however, much larger in the Nitisol (5.9‐fold) than in the Cambisol (2.2‐fold). Mi biochar is thus an alternative Si fertilizer to Wo to supply bioavailable Si, increase plant biomass, and promote the biological cycle of Si in the soil‐plant system in the Nitisol. Besides, it increased soil fertility and soil organic carbon content.  相似文献   

15.
A field experiment has been conducted to determine the effects of different irrigation water and AMF (Arbuscular Mycorrhizal Fungi) biofertilizer, photosynthesis activator and traditional fertilizer dry bean (Phaseolus vulgaris L.) on yield and growth parameters in Nevsehir Province of Turkey in 2015. The experiment has been carried out using three replications in a split plot design with three different irrigation types as main plots and AMF biofertilizer (ERS), photosynthesis activator (Multigreen-Mg), traditional fertilization (TF-Control), ERS + Mg, ERS + TF and TF + Mg applied as subplots. The number of pods per plant, the length of pods, the number of grains per pod, the weight of grains per plant, the yield of grains, 1000 seed weight, the number of grains per plant, protein yield, arbuscular mycorrhizal fungi rate have been evaluated as yield and growth criteria in the study. In the experiment, as well as the treatment x irrigation interaction, the plant height, pod number per plant, pod lenght, grain number per pod, grain weight per plant, grain yield, 1000 seed weight, grain number per plant, protein rate/grain, protein yield, root weight and AMF colonization parameters, were the other studied properties that were found to be significant. The results obtained were 877.6 mm for I100 irrigation treatment, 512.2 mm for I50 irrigation treatment and 40.19 mm water for I30 irrigation treatment. Regarding the growth parameters of dry bean, the highest PH was in ERS + Mg (67.66 cm), the lowest PH was in ERS (54.33 cm); In I50, the highest Plant Height (PH) was in ERS + Mg (65.66 cm), the lowest PH was in TF-Control (53.00 cm); and in I30, the highest PH was in TF-Control (50.66 cm), and the lowest PH was again in ERS + Mg (44.33 cm). For protein yield (PY) value, ERS + Mg, ERS + TF, TF + Mg have been placed in the same group, in I100 and I50 irrigation treatment. The highest value was ERS + TF (34.90 kg da?1) in I100, The lowest value was TF-control (19.90 kg da?1) in I30 irrigation treatment. In terms of mycorrhiza colonization ratio, ERS has been ranked first in all irrigation treatments, while the highest mycorrhiza colonization has been observed in I30 irrigation treatment (26.30%). ERS was followed by ERS + Mg (23.33%). As expected, the lowest mycorrhiza colonization ratio in all irrigation treatments have been observed in TF-control treatment, while the highest mycorrhiza colonization ratio has been respectively observed in I30 and I50 irrigation topics. The highest root weight (RW) in I100 irrigation treatment was observed in ERS (15.06 g plant?1) and it was observed in ERS (19.05 g plant?1; 26.30 g plant?1) in I50 and I30 irrigation treatments. The lowest RW in all irrigation treatments has been observed in TF + Mg (4.43 g plant?1, 6.40 g plant?1, 10.26 g plant?1), respectively.  相似文献   

16.
A field experiment was conducted in continuity of our previous study to assess the effect of Rhizobium inoculation (RI) and phosphorus fertilization (P) on growth, yield, nodulation, and P use efficiency of soybean. Different treatments were i) Rhizobium strains (0, S377, S379, and the mixture of S377+S379 i.e. S0, S1, S2, S3); ii) phosphorus fertilizer (0, 50, 100 kg ha?1 i.e. P0, P1, P2). Soybean variety NARC-1 was as used as a testing crop. Results indicated that root and shoot growth increased by RI treatments whether used alone or in combination with P. Rhizobium inoculation increased plant height up to 12% while P did not show significant effect. Increases in soot dry weight, root length and root dry weight due to RI and P was 57 and 22%, 42 and 7%, 55 and 25%, respectively, over the control treatment. Number of nodules increased from 73 in the control to a maximum of 151 in S2 while the number increased from 90 in the control to 147 in P2. Combine application of strains and P increased nodules number from 65 at S0P0 to a maximum of 183 at S2P2. Similar response was also observed for nodules mass. Soybean seed yields ranged between 1710 and 2335 kg ha?1 against 1635 kg ha?1 in the control indicating a maximum of 43% increase over control. Concentration of N and P in plants and their uptake was significantly increased by RI and P. RI also increased the N and protein content of soybean seed. Apparent recovery efficiency (ARE) of applied P was 10?12% and the agronomic, agrophysiological, recovery, utilization efficiencies, and harvest index of P decreased with increasing P rates. Nodule number significantly correlated with the DM yield (r2 = 0.78) and seed yield (r2 = 0.63) while P uptake significantly correlated with root length (r2 = 0.48) and root mass i.e. dry weight (r2 = 0.65). Also a significant correlation existed between N uptake and DM yield (r2 = 0.98) and N uptake and seed yield (r2 = 0.65), P uptake and DM yield (r2 = 0.73), and P uptake and seed yield (r2 = 0.83). The results of present study indicated a substantial growth and yield potential of soybean under the hilly region and increase in yield and N2 fixing potential (nodulation) can be achieved by applying Rhizobium inoculation with P fertilization.  相似文献   

17.
ABSTRACT

Conversion of manures to vermicompost and biochar may alleviate some negative effects of manure application to soil but the efficiency of the produced vermicompost and biochar as compared to their feedstocks is not well-known. In the current investigation, we compared the effects of sheep manure and its derived vermicompost and biochar (pyrolyzed at 400°C for 4 h) on the properties of a calcareous soil that planted with five cultivars of barley (Behrokh, Khatam, Reyhaneh03, Fajr 30 and Nimrooz) for 60 days. Different soil properties and availability of nutrients and barley yield were determined after plant harvest. The biochar significantly increased barley yield rather than control (4.20 vs. 3.57 g pot?1), but sheep manure and vermicompost had no effect on it (3.51 and 3.37 g pot?1, respectively). Fajr 30 and Nimrooz (3.52 and 3.42 g pot?1, respectively) had significantly lower yield than other cultivars. Biochar increased soil pH up to 8.2. Soil salinity was increased by application of all organic materials (increase to 16–36%). Cation exchange capacity (CEC) and organic matter content of soil were also increased by all organic materials application (0.4–0.9 cmol kg?1 and 0.33–0.50%, respectively). All organic materials increased total nitrogen (N), but this increase was the highest with sheep manure application (53%). The availability of phosphorus (P) and potassium (K) was increased significantly by application of all organic materials, and this increase was the highest with biochar application (19 and 309 mg kg?1, respectively). Biochar application had no effect on the availability of micronutrients, but application of sheep manure and vermicompost increased the availability of iron (Fe) (0.62 and 0.48 mg kg?1, respectively) and zinc (Zn) (0.18 and 0.37 mg kg?1, respectively). Generally, organic materials may change the status of soil nutrients via change in soil pH, organic matter content, release of nutrients, increase in soil CEC and formation of soluble complex with nutrients.  相似文献   

18.
Compositional Nutrient Diagnosis technique involves a yield target for discriminating between high- and low-yield subpopulations when developing norms. Traditionally, this yield value is estimated by finding the inflection point of the cumulative variance ratio function versus yield relationship through a third-order equation. However, yield targets frequently lie outside of the experimental yield range. A comparison among traditional (unrestricted) and restricted cubic model, and restricted and unrestricted Boltzmann equations was performed using a database (n = 360) of fresh matter yield and nutrient concentrations in one–year old cladodes of Opuntia ficus-indica L. The unrestricted Boltzmann equation resulted to have the best goodness-of-fit. The yield target was 27.01 kg plant?1 associated to the unrestricted Boltzmann equation for phosphorus cumulative variance ratio function versus yield relationship. Proposed nutrient optimum concentrations are: 11.4 g kg?1 for nitrogen (N), 3.4 g kg?1 for phosphorus (P), 42.3 g kg?1 for potassium (K), 42.5 g kg?1 for calcium (Ca), and 16.2 g kg?1 for magnesium (Mg).  相似文献   

19.
The application of manure compost is an effective way to increase soybean [Glycine max (L.) Merr.] yield and nitrogen (N) fertility in drained paddy fields. We investigated changes in soil N mineralization during soybean cultivation using reaction kinetics analysis to determine the contribution of increased N mineralization after manure compost application (at a rate of 0 to 6?kg?m?2) on N accumulation and seed yield of soybean under drained paddy field conditions. The seed yield and N accumulation decreased markedly in the second and third year of the experiment, but soil N mineralization increased in both years. No decrease in soil N mineralization occurred even after two soybean crops. Soil N availability was not the main cause of decreased soybean yield in the second and third years. The differences in plant aboveground N content between plots with and without manure compost was similar to the increase in N mineralization caused by manure compost application in the second and third years. The application of 6?kg?m?2 of manure compost increased the amount of ureide-N and nitrate-N in soybean in the third year. Our results suggest that manure compost application increases soil N mineralization and soybean N2 fixation, resulting in increased N accumulation and seed yield. However, the soybean yield remained less than 300?g?m?2 in the second and third years (i.e., below the yield in the first year) at all levels of manure compost application due to the remarkable decrease of N accumulation in the second and the third crops.  相似文献   

20.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号