首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is a major factor limiting crop production worldwide. Barley is a well‐adapted cereal that is largely grown on dry marginal land where water and salinity are the most prevalent environmental stresses. This study was carried out to investigate the effects of drought stress and subsequent recovery on growth, photosynthetic activity, water relations, osmotic adjustment (OA), and solute accumulation of wild (Hordeum maritimum) and cultivated barley (H. vulgare L.). In a pot experiment, 60 d old seedlings were subjected to drought stress for 0, 7, 14, 21, or 28 d, and then re‐watered to recover for up to 21 d. Plants were harvested at the end of each of these drought/recovery treatments. Drought significantly reduced fresh and dry weights at the whole‐plant level, photosynthetic activities, and solute and water potentials, while increasing leaf Na+ and K+ concentrations. The adverse effects of drought on growth were more marked in cultivated barley than in wild barley and the reverse was true for photosynthetic activities. During recovery, all wild barley seedlings completely recovered. For cultivated barley seedlings, rehydration had a beneficial effect on growth and photosynthesis, independent of treatment duration, but complete recovery did not occur. The reduction in leaf solute potential at full turgor in drought‐stressed barley, relative to the control, suggests active OA which was more significant in wild barley than in cultivated barley. OA was mainly due to the accumulation of inorganic (K+ in cultivated barley and Na+ in wild barley) and organic (soluble sugars and proline) solutes. The results suggest that OA is an important component of the drought‐stress adaptation mechanism in wild barley, but is not sufficient to contribute to drought tolerance in cultivated barley. In the latter species, the results show that even short periods (as little as 7 d) of water deficit stress had considerable long‐term effects on plant growth.  相似文献   

2.
In future, prolonged summer drought and heat will constitute a major risk for the cultivation of shallow‐rooting beech in Central Europe and will negatively affect the productivity of beech forests. In a pot experiment under controlled conditions, the influence of long‐term (28 d) water deprivation on nitrogen (N), carbon (C), phosphate (Pi), and ascorbate (ASC) concentrations was examined in leaves and fine roots of beech seedlings (Fagus sylvatica L.) from six provenances originating from Central Europe (Germany: Neidenstein and Illertissen, intermediate habitats), the Balkan peninsula (Croatia: Zagreb and Gospic, wet habitats), and Southeast Europe (Bulgaria: Kotel, Greece: Paikos; dry habitats). The goal of the study was to identify beech provenances well adapted to water limitation during summer drought events. Our results suggest that N might be involved in the alleviation of water scarcity, whereas Pi might become a limiting factor for forest growth during drought periods. Drought stress resulted in significant changes of ASC pools in leaves and fine roots and the ASC redox state. Under well‐watered and under drought conditions, ASC in leaves was the most important factor causing differences between the provenances examined. Finally, a link between P nutrition and the capacity of antioxidative stress defense by ascorbate could be highlighted. Based on observations from this study, beech seedlings from three origins (Paikos, Zagreb, and Neidenstein) might constitute beech provenances well adapted to water shortage in summer. This conclusion is drawn from the high potential of these provenances to alleviate oxidative stress during water shortage.  相似文献   

3.
ABSTRACT

Drought affects many physiological and biochemical processes and thus reduces plant growth. Phosphorus (P) fertilization improves tolerance to drought stress in many plants. A greenhouse experiment examined the interactive effects of P nutrition and drought stress on P accumulation and translocation, yield, and protein concentration in grains of two cultivars of soybean [Glycine max (L.) Merr.]. Plants of cultivars ‘Heisheng 101’ (high protein in grains) and ‘Dongnong 464’ (low protein) were grown in a P-deficient soil supplied with 0–30 mg P kg?1 soil. Drought stress was imposed at the initial flowering (R1) or the podding (R4) stage. Drought stress limited P accumulation and reduced P translocation to the seed. The addition of P enhanced the concentration and accumulation of nitrogen (N) and P in shoots and seeds of both cultivars. Drought stress decreased shoot biomass, grain yield, and P accumulation; the decrease was greater in ‘Dongnong 46’ than ‘Heisheng 101,’ and even more so if drought stress was imposed at R4 than at R1. In contrast, drought stress increased the concentration of N in shoot and protein in grains. The addition of P alleviated the effect of drought stress on plant growth, P accumulation, and grain yield in both cultivars but to a greater extent in ‘Dongnong 46’. The results suggest that application of P fertilizers could mitigate drought stress at the reproductive stage, resulting in less yield penalty and improvement of grain quality of soybean grown in P-deficient soils.  相似文献   

4.
Mycorrhizal technique is a promising biotechnology in horticultural industry, benefiting plants exposed to diverse abiotic stresses. In this study, the effects of three arbuscular mycorrhizal fungi (AMF), Acaulospora laevis, Glomus mosseae, and Glomus caledonium on plant growth and nutrient uptake of loquat (Eriobotrya japonica Lindl.) seedlings under three water regimes (well watered, water stressed-slight, water stressed-heavy) were investigated. Results showed that inoculated seedlings had higher dry biomass, plant height, and total leaf areas than those un-inoculated ones. AMF effect was the greatest for water stressed-heavy seedlings, followed by water stressed-slight seedlings and well watered seedlings. All AMF species increased the uptake of nitrogen (N) potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), and the mycorrhizal contributions to the nutrient uptake were positively related to that to the biomass. Data suggest that AMF inoculation increases the tolerance of loquat seedlings to drought stress, and the improved nutrient uptake by AMF contributes greatly to the tolerance.  相似文献   

5.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

6.
为了比较不同烤烟品种的苗期耐旱性差异,选用河南烟区主栽烤烟品种‘豫烟6号’、‘豫烟10号’、‘豫烟12号’和‘中烟100’为供试材料,利用浓度为15%的聚乙二醇(PEG-6000)模拟中度干旱环境,研究不同烤烟品种幼苗生物量、根系形态、叶片气孔特征、叶绿体超微结构和光合参数等指标对干旱胁迫响应机制的差异。结果表明:(1)干旱刺激了幼苗根系生长,抑制了地上种幼苗根冠比均显著提高;‘豫烟6号’和‘豫烟12号’幼苗根系生物量、总根长、根系表面积和根系体积均显著增加,但根系平均直径与对照无显著性差异;而‘豫烟10号’和‘中烟100’根系形态指标增加幅度较小,仅有‘豫烟10号’根系表面积显著增加,而根系平均直径均显著下降。(2)干旱引起‘中烟100’叶片气孔总面积比对照显著增加,‘豫烟12号’仅有气孔长度比其对照增加显著。(3)干旱处理后,‘豫烟6号’和‘豫烟12号’叶绿体整体结构变化不大,而‘豫烟10号’和‘中烟100’中叶肉细胞叶绿体被膜分解,与细胞壁分离;其中‘中烟100’叶绿体平均长度、长宽比和面积均显著降低。(4)与对照相比,干旱组叶片光合作用被抑制,其中‘豫烟10号’和‘中烟100’叶片净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均显著下降,而胞间CO2浓度(Ci)显著上升,说明干旱胁迫下烤烟光合速率下降是非气孔因素所致。(5)干旱胁迫后‘豫烟6号’和‘豫烟12号’叶片叶绿素总量显著增加,而‘豫烟10号’和‘中烟100’却呈下降趋势。结果表明,‘豫烟6号’和‘豫烟12号’是耐旱型品种,而‘豫烟10号’和‘中烟100’抗旱性较差,抗旱能力排序为‘豫烟6号’‘豫烟12号’‘豫烟10号’‘中烟100’。  相似文献   

7.
Water stress is one of the major limitations to the agricultural productivity around the globe, particularly in warm, arid and semi-arid regions of the world. Sunflower (Helianthus annuus L.), being a crop with medium water requirements, has the ability to tolerate a short period of drought. However, water stress in the soil as well as inside the plant influences various physiological and biochemical processes. This may inhibit plant growth, decrease developmental activities of the cells and tissues and cause a variety of morphological, physiological and biochemical modifications. Nitrogen (N) is one of the most important mineral nutrients because of its numerous effects on plant growth and yield. A number of fundamental processes such as water and nutrient uptake, protein metabolism, photosynthesis, carbon partitioning, and enzyme and plant hormonal activities are regulated by N. These responses result in profound changes in growth rate, net photosynthate production, plant development, and yield. It is well documented that nutrient uptake of plants is inhibited in dry soils and with expected nutrient deficiencies the normal functioning of the plants is affected. Different strategies are being practiced in the world to cope with the problem of nutrient deficiency under water stress. Nitrogen application either through soil or through foliar feeding is an important strategy to alleviate the adverse effect of drought. Supplemental application of N as foliar fertilization to soil-applied fertilization is important in situation where nutrient supply through soil is limited. Some of the relevant work available about the effect of water stress and nutrient availability in sunflower is reviewed in this paper.  相似文献   

8.
Leguminous plants grown in sewage sludge–amended soils can acquire nitrogen by assimilation of nitrate and ammonium from the soil solution or from atmospheric‐dinitrogen (N2) fixation through association with N2‐fixing bacteria. We proposed that operation of both metabolic processes could contribute to alleviate the impact of drought in sludge‐treated plants. A greenhouse experiment was conducted to evaluate the involvement of nodule metabolism in the use efficiency of water and N in sludge‐treated plants. Treatments comprised (1) plants inoculated with rhizobia and amended with sewage sludge; (2) plants inoculated with rhizobia without any amendment; and (3) noninoculated plants supplied with ammonium nitrate, each under well‐watered and drought conditions. Under drought, sludge‐treated plants had increased plant growth and higher photosynthetic and water‐use efficiencies than untreated plants. Drought stimulated nitrate reductase and GS/GOGAT activities but did not affect the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase or the leghemoglobin concentration. The results suggest that under drought conditions, both N2 fixation and nitrate assimilation in nodules of sludge‐treated plants contributed to improve plant N supply and to increase the drought tolerance of alfalfa.  相似文献   

9.
ABSTRACT

The comparative effects of drought stress on seed performance, growth parameters, free proline content, lipid peroxidation, and several antioxidative enzymes activities were studied in both cultivars of Brassica napus L. Drought stress increased mean germination rate and mean of day germination in both cultivars, and its effect was more pronounced in RGS003. The length and dry weight of root increased significantly in both cultivars under drought. RGS003 was more tolerant and obtained more biomass under drought than that of Sarigol. Proline content and pyrroline-5-carboxylate synthetase expression increased in Sarigol under drought. Measurement of malondialdehyde content in seedlings showed that lipid peroxidation was lower in RGS003 than in Sarigol. Antioxidant enzyme activities showed different trends in the two cultivars under drought stress but were higher in RGS003 than in Sarigol. These results suggest that RGS003 is better protected against drought-induced oxidative damage. Lipoxygenase activity only induced under water deficit condition in RGS003. Changes of respiratory enzymes activities of RGS003 subjected to drought stress showed a pattern different with Sarigol. Drought stress induced aconitase activity in RGS003, but it reduced fumarase and succinate dehydrogenase activity in Sarigol. This study showed that RGS003 exhibits a better protection mechanism against oxidative damage and RGS003 is more drought-tolerant than Sarigol possibly by maintaining and/or increasing growth parameters, antioxidant enzyme activities, and respiratory enzymes activities.  相似文献   

10.
11.
Drought in soybean [Glycine max (L.) Merr.] decreases yield‐related processes and N2 fixation is more sensitive to drought than are many other of these processes. Therefore, application of nitrogen (N) fertilizer may increase drought tolerance over those plants primarily dependent on N2 fixation. In a field experiment, NH4NO3 applications (+N) to drought‐stressed soybean resulted in biomass and N accumulation rates similar to those rates for an irrigated treatment without N fertilizer (‐N). In contrast, biomass and N accumulation rates were decreased for the ‐N treatment. N fertilization increased seed growth rate and decreased seed fill duration for irrigated and drought treatments. In the drought treatment, N application increased seed number per unit area, which resulted in higher yields. In a greenhouse experiment, fertilization with either KN03 or NH4C1 increased biomass and N accumulation rates during drought over those of plants dependent solely on N2 fixation. It was concluded that application of N fertilizer to soybean increases drought tolerance because of the extreme sensitivity of N2 fixation to drought.  相似文献   

12.
Potassium (K) deficiency reduces photosynthesis and biomass production of crop plants and also renders them vulnerable to drought stress, whereas elevated carbon dioxide (CO2) has a positive effect on photosynthesis and yield and ameliorates the adverse effects of drought stress. This study aimed to characterize the physiological responses of wheat (Triticum aestivum L.) stressed with K deficiency under elevated CO2 and drought conditions. Increased biomass production caused by elevated CO2 as a consequence of increased photosynthesis and water use efficiency was absent in young K‐deficient wheat plants. Shoot K concentration was negatively affected by elevated CO2 particularly under K‐deficient conditions, whereas K content per plant was greatest in plants supplied with adequate K and adequate water. Specific leaf weight was increased as a consequence of carbohydrate accumulation in the source leaves of K‐deficient plants particularly under elevated CO2 and drought stress. Potassium deficiency clearly impeded the impact of elevated CO2 in both well watered as well as drought‐stressed plants. Adequate K fertilization is a prerequisite for efficient harvesting of atmospheric CO2 through increased photosynthesis, decreased transpiration, and increased biomass production under changing atmospheric CO2 and soil moisture conditions.  相似文献   

13.
There is a direct relationship between soil nutrient concentration in localized zones and root proliferation and elongation under well‐watered conditions. However, in field studies under semiarid conditions this relationship can change due to higher salt accumulation and soil dryness that affect root growth, water stress resistance, and seedling survival. We assessed the effect of different locations of fertilizer placement in the soil profile and water availability on root zone salinity, root development and ecophysiological responses of Quillaja saponaria Mol. after outplanting. A single dose (6 g L?1) of controlled‐release nitrogen fertilizer (CRFN) was placed at 0 cm (top layer), 15 cm (middle layer), or 30 cm (bottom layer) depth in the containers in a greenhouse, in addition to an unfertilized treatment (control). After 6 months, seedlings were transplanted to the field and subjected to weekly watering regimes (2 L plant?1 and unwatered). Morphological and ecophysiological parameters were periodically measured on seedlings, as well as soil electrical conductivity (EC). After 1 year, the shoot : root ratio of unwatered seedlings decreased as a function of CRFN placement depth, which was attributed to lower shoot growth and not to greater root growth. The root morphology of the bottom layer treatment was negatively affected by high EC in unwatered seedlings. Greater total root length and root volume of the middle layer treatment was found only when well‐watered; however, this did not contribute to improve physiological responses against water stress. The lowest EC and the highest photochemical efficiency, net photosynthesis, and stomatal conductance were shown by unfertilized seedlings, independent of water availability. Our findings suggest that varying depth of CRFN placement does not contribute significantly to improve root growth under water restriction. Water supplements, independently of the CRFN location in the substrate, contribute to decrease root zone salinity, and consequently, improve root volume growth.  相似文献   

14.
Crop productivity in future may be limited due to water scarcity. However, foliar spray of plant growth promoters may boost crop production even in adverse environments. In the present study, foliar application of one natural (moringa leaf extract, 3% MLE) and four synthetic (Polydol, Multisol, Classic, and Asahi Star) were applied at tillering, jointing, booting, and heading growth stages of wheat (Triticum aestivum L.) during severe, moderate, and light drought and well‐watered condition. No spray and water spray were taken as controls. Results showed significant reduction in growth parameters such as total dry matter production, mean crop growth rate, net assimilation rate, leaf area index, and duration due to drought employed at various phenophases of wheat. However, improvement in these parameters was observed after foliar application of growth promoters, whereas interactive effects between factors were found non‐significant. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were more accelerated under drought treatments from exogenously supplied growth promoters. Foliar application of promoters significantly alleviated drought‐induced reduction of yield and related traits. Grain weight (15%) and grain yield (27%) were improved due to exogenously applied MLE under moderate drought stress treatments relative to controls. Furthermore, 16% higher grain yield and 17% saving of irrigation water over fully irrigated and without promoter treatment (farmers' practice) was recorded from foliar‐applied MLE under skipped irrigation at jointing. In conclusion, foliar‐applied MLE may ameliorate drought‐induced deleterious effects by enhancing antioxidant activities under drought stress.  相似文献   

15.
16.
土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响   总被引:2,自引:1,他引:2  
[目的]探讨干旱与半干旱区受损红砂种群幼苗适宜生长的土壤水分条件,为红砂植被保护、恢复、重建提供理论依据。[方法]采用盆栽试验研究不同土壤水分条件下红砂幼苗生长及渗透调节物质差异。[结果]随土壤水分胁迫程度的加剧,红砂幼苗茎叶总生物量呈明显的减少趋势,其株高呈逐渐降低的变化趋势,而根冠比、根长和根表面积均呈逐步增大的变化趋势,根系生物量呈先增加后减少的变化趋势。随土壤水分胁迫程度的加剧,红砂幼苗茎叶、根组织中脯氨酸含量均表现出明显的增加趋势,而可溶性糖和可溶性蛋白含量的变化相对不明显。[结论]土壤水分胁迫下红砂幼苗可通过调整自身生长和生物量分配来加大根冠比以及通过积累脯氨酸来适应干旱胁迫,维持植株正常生长。  相似文献   

17.
Soil nitrogen (N) availability is dominated by soil water regime and the N fertilizer levels, which affect crop growth in soil water stress. To determine the optimum N applications under different degrees of soil drought, this study investigated the effects of N fertilizer levels on the crop water stress index (CWSI) of summer corn under soil water stress. A 2-year field experiment was conducted in waterproof plots in upland red soils in subtropical China. Three N fertilizer levels and seven soil water deficit levels were employed in 2007 and 2008. Nitrogen fertilization had no influence on the CWSI of the corn under slight to moderate soil drought, but the high-N treatment increased the CWSI significantly (P < 0.01) under soil drought when the mean CWSI exceeded ~0.20. The results suggested that for scheduling irrigation or predicting crop yields, the equations between CWSI and yield should be established on comparable N fertilization levels.  相似文献   

18.
The effects of nickel (Ni) on growth, leaf water status, and mineral nutrient concentration were studied in two wheat (Triticum durum Desf.) cultivars with different sensitivity to water stress: ‘Adamello’ [drought sensitive (DS)] and ‘Ofanto’ [drought tolerant, (DT)]. The DT cultivar showed a higher Ni absorption capacity: ‘Ofanto’ seedlings grown in the presence of 35 μM Ni had a 3.5 times greater concentration of Ni in roots than did ‘Adamello’. Despite the greater Ni tissue content, the DT cultivar exhibited better growth and nutritional status when compared to the DS cultivar. In the DS cultivar the concentration of chlorophyll a and b was reduced by Ni treatment. Chlorophyll a concentration decreased in the DT cultivar, but to a lesser extent than in the DS cultivar; chlorophyll b was not altered by Ni level in the DT cultivar. Nickel caused a decrease in the water potential (ψw) and relative water content (RWC) in both cultivars, but these decreases were greater in the DS cultivar. The antioxidative defense enzymes, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase, showed increased activity in Ni‐treated DS seedlings; this increase in activity was not observed in the DT seedlings. These data suggest that different wheat genotypes may markedly differ in Ni uptake and sensitivity and that a enhanced capacity to counteract Ni stress may be associated with drought resistance.  相似文献   

19.
The effect of phosphorus (P) nutrition and soil water availability (W) on the growth of wheat (Triticum aestivum L.) plants was studied in two pot experiments. Several levels of P supply were applied once before sowing. Before seedling establishment, the pots were kept near 100% of field capacity (FC). Afterwards, half of the pots were maintained between 60–70% FC. Control pots were kept at 85–95% FC by weighing and watering every two to three days. Several harvest of shoots were done before anthesis. At each harvest, dry matter and total P accumulation were measured in shoots. The main differences between both experiments were the way the drought stress was imposed, the levels of P supply, and the developmental stage of the plants at each harvest. In Experiment 1, no additional P resulted in a reduction of the shoot dry matter of 24 and 48% for well watered and drought‐stressed plants, respectively. In Experiment 2, these reductions were of 33 and 65% for well‐watered and drought‐stressed plants, respectively. In both experiments, the effect of the drought‐stress treatment was different at different levels of P supply. Interactions between P and W treatments were attributed to both, a less intense drought stress in P0 plants, and to the enhancement of drought‐stress tolerance in P100 plants (Experiment 1), and P60 plants (Experiment 2).  相似文献   

20.
Silicon (Si) is widely distributed in nature and can promote plant growth under various biotic and abiotic stresses. Drought stress seriously affects plant growth and the concentration and ecological stoichiometry of nutrients. Integrated nutrient management effectively protects plants from stresses. However, the role of water and Si availability on element concentrations and stoichiometry in plantain (Plantago lanceolata L.) are unclear. Accordingly, this study observed changes in the concentration and stoichiometry of macro- and micro-elements in plantain leaves supplied with various levels of Si under variable water availabilities through a greenhouse experiment. Supplemental Si increased Si concentration of leaves under both well-watered and drought conditions. Without supplemental Si, drought conditions decreased concentrations of carbon (C), C: nitrogen (N), C: phosphorus (P), silicon (Si):N, Si:P and increased concentrations of N, P, N:P, Si:C, calcium (Ca2+), magnesium (Mg2+), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). Increased Si under water stress increased concentrations of C, C:N, C:P, Si:C, Si:N, and Si:P, and decreased concentrations of Ca2+, sodium (Na+), and Mg2+. These results suggested that exogenous Si changed the concentrations and ecological stoichiometry of macro- and micro-elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号