首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using six bread wheat genotypes (Triticum aesttvum L. cvs. Dagdas‐94, Gerek‐79, BDME‐10, SBVD 1–21, SBVD 2–22 and Partizanka Niska) and one durum wheat genotype (Triticum durum L. cv. Kunduru‐1149) experiments were carried out to study the relationship between the rate of phytosiderophore release and susceptibility of genotypes to zinc (Zn) deficiency during 15 days of growth in nutrient solution with (1 μM Zn) and without Zn supply. Among the genotypes, Dagdas‐94 and Gerek‐79 are Zn efficient, while the others are highly susceptible to Zn deficiency, when grown on severely Zn deficient calcareous soils in Turkey. Similar to the field observations, visual Zn deficiency symptoms, such as whitish‐brown lesions on leaf blades occurred first and severely in durum wheat Kunduru‐1149 and bread wheats Partizanka Niska, BDME‐10, SBVD 1–21 and SBVD 2–22. Visual Zn deficiency symptoms were less severe in the bread wheats Gerek‐79 and particularly Dagdas‐94. These genotypic differences in susceptibility to Zn deficiency were not related to the concentrations of Zn in shoots or roots. All bread wheat genotypes contained similar Zn concentration in the dry matter. In all genotypes supplied adequately with Zn, the rate of phytosiderophore release was very low and did not exceed 0.5 μmol/48 plants/ 3 h. However, under Zn deficiency the release of phytosiderophores increased in all bread wheat genotypes, but not in the durum wheat genotype. The corresponding rates of phytosiderophore release in Zn deficient durum wheat genotype were 1.2 umol and in Zn deficient bread wheat genotypes ranged between 8.6 μmol for Partizanka Niska to 17.4 umol for SBVD 2–22. In Dagdas‐94, the most Zn efficient genotype, the highest rate of phytosiderophore release was 14.8 umol. The results indicate that the release rate of phytosiderophores does not relate well with the susceptibility of bread wheat genotypes to Zn deficiency. Root uptake and root‐to‐shoot transport of Zn and particularly internal utilization of Zn may be more important mechanisms involved in expression of Zn efficiency in bread wheat genotypes than release of phytosiderophores.  相似文献   

2.
The effect of Zn deficiency in wheat (Triticum aestivum L. cv. Ares) on the release of Zn mobilizing root exudates was studied in nutrient solution. Compared to Zn sufficient plants, Zn deficient plants had higher root and lower shoot dry weights. After visual Zn deficiency symptoms in leaves appeared (15–17 day old plants) there was a severalfold increase in the release of root exudates efficient at mobilizing Zn from either a selective cation exchanger (Zn-chelite) or a calcareous soil. The release of these root exudates by Zn deficient plants followed a distinct diurnal rhythm with a maximum between 2 and 8 h after the onset of light. Re-supply of Zn to deficient plants depressed the release of Zn mobilizing root exudates within 12 h to about 50%-, and after 72 h to the level of the control plants (Zn sufficient plants). The root exudates of Zn deficient wheat plants were equally effective at mobilizing Fe from freshly precipitated FeIII hydroxide as Zn from Zn-chelite. Furthermore, root exudates from Fe deficient wheat plants mobilized Zn from Zn-chelite, as well as Fe from FeIII hydroxide. Purification of the root exudates and identification by HPLC indicated that under Zn as well as under Fe deficiency, wheat roots of the cv. Ares released the phytosiderophore 2′-deoxymugineic acid. Additional experiments with barley (Hordeum vulgare L. cv. Europa) showed that in this species another phytosiderophore (epi-3-hydroxymugineic acid) was released under both Zn and Fe deficiencies. These results demonstrate that the enhanced release of phytosiderophores by roots of grasses is not a response mechanism specific for Fe deficiency, but also occurs under Zn deficiency. The ecological relevance of enhanced release of phytosiderophore also under Zn deficiency is discussed.  相似文献   

3.
Zinc (Zn) deficiency is more common in corn (Zea mays L.) than in sorghum [Sorghum bicolor (L.) Moench] or wheat (Triticum sp.). The ability of wheat to withstand low soil Zn conditions is related to increased release of phytosiderophore from its roots. The reasons for sorghum's ability and corn's inability to utilize low levels of soil Zn have not been explored adequately. The objectives of this research were to 1) ascertain if Zn deficiency could be induced in sorghum, wheat, and corn grown in a chelator‐buffered nutrient solution and 2) determine relative releases of phytosiderophore from roots of sorghum, wheat, and/or corn under Zn‐deficiency conditions. Sorghum, wheat, and corn were grown hydroponically in the greenhouse with a chelator‐buffered nutrient solution designed to induce Zn deficiency, while supplying adequate amounts of other nutrients. Root exudates were collected over time to measure phytosiderophore release. Shoot Zn concentrations and shoot and root dry matter yields were determined also. The technique was effective for inducing Zn deficiency in sorghum, wheat, and corn, as evidenced by reduced shoot and root dry matter yields, shortened internodes, reduced shoot Zn concentrations, and plant Zn concentrations below the suggested critical values for these species. Sorghum and wheat plants increased the release of phytosiderophore in response to Zn deficiency, but com did not. The total amount of phytosiderophore released by the roots was in the order wheat>sorghum>corn. The absence of a “phytosiderophore”; response to Zn deficiency of corn, coupled with the evidence that this species requires, or at least accumulates, more Zn than wheat or sorghum, provides an explanation as to why Zn deficiencies are more prevalent for corn than wheat or sorghum under field conditions.  相似文献   

4.
Despite numerous studies on phytosiderophores (PS) there is still an open question whether nickel (Ni) deficiency induces release of PS from graminaceous plant roots. Seedlings of two wheat cultivars (Triticum aestivum L. cvs. Rushan and Kavir) and a triticale cultivar (X. triticosecale) were grown in Ni‐free nutrient solution (Ni‐deficient, Ni–) and with 10 µM NiSO4 (Ni‐sufficient, Ni+, control). Root exudates were collected weekly for 4 weeks and the amount of PS in the root exudates was measured. The response to Ni deficiency on the release of PS differed between species. Roots of Rushan and triticale exuded higher PS in response to Ni‐deficient conditions. Nickel deficiency significantly enhanced shoot Fe and Zn concentrations in wheat, while it decreased shoot Fe and Zn concentrations in triticale. In Kavir, PS exudation was decreased by Ni deficiency at weeks 3 and 4 and the reduced release of PS from roots of Kavir was accompanied by lower concentrations of Fe and Zn in plant roots but higher Fe and Zn concentrations in shoot tissue. The PS release by Kavir was triggered by a Ni‐induced Zn deficiency particularly in the shoots. According to the results, it is suggested that in the studies concerning the phytosiderophore release under Ni deficiency, special attention should be given to different responses among and within cereals and to the plant Zn or Fe nutritional status.  相似文献   

5.
The relative amount of phytosiderophore produced by various Strategy II plants has been categorized as follows: barley (Hordeum vulgare L.) > wheat (Triticum aestivum L.) > oat (Avena byzantina C. Koch.) > rye (Secale cereale L.) >> corn (Zea mays L.) >> sorghum (Sorghum bicolor (L.) Moench) > rice (Oryza sativa L.). With the exception of rice, these plants developed under oxidized soil conditions, and the C‐3 species produce more phytosiderophore than C‐4 species under Fe‐deficiency stress. Iron‐efficient Coker 227 oat produced phytosiderophore in response to Fe‐deficiency stress, while Fe‐inefficient TAM 0–312 oat did not. Although Fe‐efficient WF9 corn and Fe‐inefficient ys1 corn differed in their ability to obtain Fe, neither produced sufficient quantities of phytosiderophore to explain these differences. The objectives of this research were to determine: (a) if phytosiderophore production of Fe‐deficiency stressed C‐4 species millet (Panicum miliaceum L.) and corn is low or absent compared to identically stressed C‐3 species oat and barley, and (b) if native, inbred and hybrid corn cultivars differ in ability to produce and utilize phytosiderophores.

Although release of phytosiderophore for Fe‐stressed corn and millet was generally lower than oat, quantity of release was not always related to obtaining Fe and maintaining green plants. Barley maintained high leaf Fe and low chlorosis with a minor release of phytosiderophore. Oat with increased release acted similarly to barley, whereas a relatively high release of phytosiderophore from White maize did not effect Fe uptake or greening. Likewise, small amounts of phytosiderophore were produced by all corn types, but corn was generally unable to obtain adequate Fe from the growth medium. Two of the native corns, Coneso and Tepecintle, maintained relatively low chlorosis, but they differed in phytosiderophore release. Thus, it appears that the C‐4 plants studied herein generally release a lower amount of phytosiderophore than do C‐3 species, but overcoming Fe‐deficiency chlorosis is not guaranteed by such release. The Strategy II mechanism of mere release of phytosiderophore and consequential Fe acquisition appears simplistic. There is a need for understanding what other factors are involved.  相似文献   

6.
Plant growth, leaf chlorosis, root reductive capacity, rhizosphere pH, and phytosiderophore release capacity were used as indices to evaluate the responses of maize (Zea mays L. cv ‘clipper'), millet (Pennisetum glaucum L. cv. ‘Dwarf Gero'), sorghum (Sorghum bicolor L. cv. YG 5760), barnyard grass (Echinochloa crus galli L. cv: unknown), wheat (Triticum aestivum L. cv. ‘tonic'), and white lupin (Lupinus albus L. cv ‘lucky') to iron‐deficiency stress. Generally, root and shoot dry matter increased with iron treatment and leaves became less chlorotic. Neither the order nor the magnitude of the root reductive capacities of the monocots studied was affected by iron deprivation, but these reductive capacities and the changes in rhizosphere pH differed markedly. Significant iron stress‐induced phytosiderophore release was observed only in wheat and sorghum in which accompanying increases in rhizosphere pH were also evident. Such phytosiderophore release matched the severity of leaf chlorosis and iron uptake and depended on the form in which the element was supplied. These results, from experiments conducted in non‐axenic hydroponic cultures, indicate that in iron‐ deficiency stress mechanisms ‐ similar to those found in dicots ‐could account for iron uptake in some graminaceous monocots, and that strategy II‐type response proposed for all in this category of plants would be an over simplification.  相似文献   

7.
Tolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.  相似文献   

8.
根分泌物与禾本科植物对缺铁胁迫的适应机理   总被引:8,自引:0,他引:8  
本文系统地总结了自然基金重点项目根分泌物在根际微生态系统中的营养机理的研究进展和部分主要成果。研究表明,养分专一性根分泌物是植物营养遗传特性控制基因的标记物,它受某一养分缺乏的诱导,是在植物体内合成并可通过主动分泌作用进入根际的代谢产物。它的合成和分泌只受该养分胁迫的专一诱导和控制,只要改善这一营养状况就能抑制或阻止其合成和分泌。当植物缺乏这一养分时,植物体可通过自身的调节能力,合成专一性物质并自根分泌到根际,促进该养分的活化并提高植物对其吸收利用效率,从而达到克服或缓解该营养胁迫的目的。用单基因突变材料进行的研究表明,植物铁载体的生物合成和吸收利用是受单基因控制的过程。这一发现不仅使人类有可能运用生物学研究技术来解决营养缺乏问题,而且也为有效地利用自然资源、降低生产成本、减少环境污染提供了可能性。麦根酸类(mugineic.acids)植物铁载体(phytosiderophores)在缺铁禾本科植物体内的生物合成,从植物根内向根际的分泌、在根际环境中对铁的活化及植物对F63+植物铁载体螯合体的吸收四个过程组成了禾本科植物对缺铁胁迫的适应机理。植物铁载体只在早晨日出后2~6h内大量分泌的节律性增加了它们在根际土壤中的相对浓度,减少了它们与土壤颗粒的接触和被吸附;分泌部位集中在微生物尚未侵染的根尖避开了微生物的破坏和分解,同时也增加了它们在土壤微区中的相对浓度。分泌作用和螯合作用不受介质pH值和Ca2+离子浓度影响的特性使该机理在经常出现缺铁现象的石灰性土壤上具有特殊意义。研究结果还表明,缺铁可以诱导激活根细胞原生质膜上可能存在的Fe3+植物铁载体复合体的专一性吸收和运载蛋白,高pH值和CaCO3对这一蛋白的载体功能只有很小的抑制作用,即使在pH值和CaCO3含量都较高的石灰性土壤上,也能有效地发挥作用。这一结论揭示了小麦等禾本科植物适应铁胁迫的实质及其生态学意义。  相似文献   

9.
Iron (Fe) deficiency in small grains grown on calcareous soils results in reduced yields, is difficult and expensive to treat with fertilizer, and is complicated to overcome by genetic field screening due to heterogeneous soil and environmental conditions. Recently, phytosiderophore release has been linked to ability of species and genotypes to resist Fe‐deficiency chlorosis. We propose a laboratory technique to measure phytosiderophore release by Fe‐deficient oat (Avena sativa L.) genotypes as a selection method for Fe‐deficiency chlorosis resistance in oat. Plants were grown in Fe‐limiting nutrient solution and phytosiderophore release was measured on 11 days. Summations of daily phytosiderophore release by 17 oat genotypes correlate well with Fe‐deficiency chlorosis scores in the field (r = ‐0.70, p = 0.01). The proposed method consistently identified the genotypes most susceptible to Fe deficiency but did not clearly separate the moderately susceptible genotypes. In these latter genotypes, other factors such as active uptake sites, root growth rate, utilization of acquired Fe, or soil interactions may be modifying factors to phytosiderophore in Fe efficiency. Quantification of phytosiderophore provides a useful selection criterion for oat by eliminating the most inefficient types and with refinement, may become a powerful tool for identifying Fe efficiency in grass crops.  相似文献   

10.
Abstract

The diurnal rhythm of release of phytosiderophores and uptake rate of zinc (Zn) was studied in iron (Fe) deficient wheat (Triticum aestivum L. cv. Ares) plants grown in nutrient solution under controlled environmental conditions. Different forms of Zn (e.g. ZnSO4, ZnEDTA) were used to obtain different degrees of loading of the root apoplasmic pool with Zn.

In the Fe-deficient plants the release of phytosiderophores from the roots followed a distinct diurnal rhythm with a steep peak about 4 h after the onset of the light period. These plants also showed a similar pattern in the rates of Zn uptake over the 24 h day-night cycle. During the light period there was a steep transient peak (factor 3.8) in Zn uptake rate in the Fe-deficient plants supplied with ZnSO4. This transient peak was much less distinct in plants supplied with ZnEDTA (factor 1.8) and absent in plants supplied with ZnEDTA plus free chelator (+ NaEDTA) in excess. The peak in Zn uptake coincided with the maximum rate of phytosiderophore release in the Fe-deficient plants. In the Fe-sufficient plants the release of phytosiderophores was very low and no such peak in Zn uptake rates could be observed.

These results demonstrate that phytosiderophores mobilize Zn not only in the rhizosphere, but also from the root apoplast. Thus, the apoplasmic pool of micronutrient cations has to be taken into account as potential source for both uptake and diurnal variation in uptake rates of Micronutrient cations.  相似文献   

11.
Increasing the mobilization and root uptake of chromium (Cr) by synthetic and plant‐borne chelators might be relevant for the design of phytoremediation strategies on Cr‐contaminated sites. Short‐term uptake studies in maize roots supplied with 51CrCl3 or 51Cr(III)‐EDTA led to higher apoplastic Cr contents in plant roots supplied with 51CrCl3 and in Fe‐sufficient plants relative to Fe‐deficient plants, indicating that Fe stimulated co‐precipitation of Cr. Concentration‐dependent retention of Cr in a methanol:chloroform‐treated cell‐wall fraction was still saturable and in agreement with the predicted tendency of Cr(III) to precipitate as Cr(OH)3. To investigate a possible stimulation of Cr(III) uptake by phytosiderophores, Fe‐deficient maize roots were exposed for 6 d to Cr(III)‐EDTA or Cr(III)‐DMA (2'‐deoxymugineic acid). Relative to plants without Cr supply, the supply of both chelated Cr species in a subtoxic concentration of 1 µM resulted in alleviation of Fe deficiency–induced chlorosis and higher Cr accumulation. Long‐term Cr accumulation from Cr(III)‐DMA was similar to that from Cr(III)‐EDTA, and Cr uptake from both chelates was not altered in the maize mutant ys1, which is defective in metal‐phytosiderophore uptake. We therefore conclude that phytosiderophores increase Cr solubility similar to synthetic chelators like EDTA, but do not additionally contribute to Cr(III) uptake from Cr‐contaminated sites.  相似文献   

12.
Cu, Zn, and Cd acquisition by two spinach cultivars depending on P nutrition and root exudation Within a spectrum of 11 spinach cultivars (cvs) differences in the Cu, Zn, and Cd contents of shoots had been noticed. The aim of this study was therefore to analyze in more detail the acquisition of Cu, Zn, and Cd by the most differing cultivars (Tabu and Monnopa) in dependence on P nutrition. The plants were grown in a low phosphorus Luvisol (pH 6.3; total contents Cu: 89, Zn: 297, Cd: 2.4 mg kg—1) with two phosphorus levels in pots under natural conditions. For the determination of inflow, root length/shoot weight ratio and of the Cu, Zn, and Cd concentration in the soil solution (rhizosphere) plants were harvested 26 and 40 days after sowing. Root exudation of organic acids of the two cvs was measured 35 days after growing in quartz sand with different P supply. Both cultivars responded to P fertilizer by doubling their shoot weight. With increased P supply (0.68—0.77% P in shoot‐DM) both cultivars showed similar heavy metal contents in the shoot resulting from similar root length/shoot weight ratios (RSR) and net uptake rates of the three elements as well as the same element concentrations in the rhizosphere soil solution. Under P deficiency, however, cv. Tabu (0.52% P in shoot‐DM) showed in comparison with cv. Monnopa (0.48% P) higher Cu, Zn, and Cd contents of shoots although its RSR was smaller than that of cv. Monnopa. However, the inflow for Cu was higher and for Zn and Cd significantly higher compared with cv. Monnopa. This result of cv. Tabu corresponded with higher concentrations of Cu, Zn, and Cd of its rhizosphere soil solution, and its higher exudation rates of oxalate, citrate, and malate (3.9; 1.0; 0.7 nmol cm—1 h—1). The corresponding values for cv. Monnopa were: 1.7; 0.3; 0.4 nmol cm—1 h—1. The mobilization of Cu, Zn, and Cd by the excreted organic acids seems to be responsible for the higher Cu, Zn, and Cd inflow of cv. Tabu.  相似文献   

13.
Zinc‐inefficient Sanilac and Zn‐efficient Saginaw navy bean (Phaseolus vulgaris L.) differ in their susceptibility to Zn‐deficiency stress. Sanilac accumulates Fe under Zn‐deficiency stress and Saginaw does not. These two navy bean cultivars were grown at 0, 0.006 and 0.12 mg/L Zn in modified Hoagland nutrient solution. Various Fe‐stress response mechanisms were quantified periodically over a 12‐day experimental period to determine if known factors in the Fe‐stress response mechanism were enhanced by Zn‐deficiency stress. Visual Zn‐deficiency symptoms were more severe in Sanilac than Saginaw navy bean under equivalent Zn treatments. Sanilac contained lower leaf Zn than Saginaw when Zn was present in solution (0.006 and 0.12 mg/L Zn), but the two cultivars were similar in leaf Zn in the absence of Zn (0 mg/L Zn). Sanilac accumulated more leaf Fe than Saginaw when under Zn stress (0 and 0.006 mg/L Zn). The higher levels of leaf Fe in Sanilac than Saginaw were closely associated with enhanced release of reductants and increased reduction of Fe3+ to Fe2+ by roots of Sanilac. Saginaw navy bean roots reduced Fe3+ to Fe2+ similarly to Sanilac with adequate Zn present in solution (0.12 mg/L), but experienced minuscule levels of Fe3+ reduction under Zn deficiency. Zinc deficiency stimulated the initiation of the Fe‐stress response mechanism in Sanilac, but not Saginaw, which may have enhanced the development of Zn‐deficiency symptoms in Sanilac due to the increased uptake of Fe by this cultivar. The common Fe‐deficiency stress response associated primarily with grasses (release of phytosiderophore) was not found in either navy bean cultivar.  相似文献   

14.
Rising temperatures are a major threat to global wheat production, particularly when accompanied by other abiotic stressors such as mineral nutrient deficiencies. This study aimed to quantify the effects of supra‐optimal temperature on growth, photosynthetic performance, and antioxidative responses in bread wheat cultivars grown under varied zinc (Zn) supply. Two bread wheat cultivars (Triticum aestivum L., cvs. Lasani‐2008 and Faisalabad‐2008) with varied responsiveness to Zn supply and drought tolerance were cultured in nutrient solution with low (0.1 µM) or adequate (1.0 µM) Zn under optimal (25/20°C day/night) or supra‐optimal (36/28°C day/night) temperature regimes. Supra‐optimal temperature severely reduced root but not shoot biomass, whereas low Zn reduced shoot as well as root biomass. Shoot‐to‐root biomass ratio was reduced under low Zn but increased under supra‐optimal temperature. Supra‐optimal temperature inhibited root elongation and volume particularly in plants supplied with low Zn. In both cultivars, Zn efficiency index was reduced by supra‐optimal temperature, whereas heat tolerance index was reduced by low Zn supply. Supra‐optimal temperature decreased photosynthesis, quantum yield, and chlorophyll density in low‐Zn but not in adequate‐Zn plants. In comparison, low Zn decreased specific activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and increased glutathione reductase (GR), where supra‐optimal temperature increased SOD, decreased GR and did not change APX activity in leaves and roots. Moreover, supra‐optimal temperature severely reduced shoot Zn concentration and Zn uptake per plant specifically under adequate Zn supply. Overall, supra‐optimal temperature exacerbated adverse effects of low Zn supply, resulting in severe reductions in growth traits viz. shoot and root biomass, root length and volume, and consequently impeded Zn uptake, enhanced oxidative stress and impaired photosynthetic performance. Adequate Zn nutrition is crucial to prevent yield loss in wheat cultivated under supra‐optimal temperatures.  相似文献   

15.
Abstract

Greenhouse experiments were carried out to study the influence of gyttja, a sedimentary peat, on the shoot dry weight and shoot concentrations of zinc (Zn) and boron (B) in one bread wheat (Triticum aestivum L., cv. Bezostaja) and one durum wheat (Triticum durum L., cv. Kiziltan) cultivar. Plants were grown in a Zn‐deficient (DTPA‐Zn: 0.09 mg kg?1 soil) and B‐toxic soil (CaCl2/mannitol‐extractable B: 10.5 mg kg?1 soil) with (+Zn = 5 mg Zn kg?1 soil) and without (?Zn = 0) Zn supply for 55 days. Gyttja containing 545 g kg?1 organic matter was applied to the soil at the rates of 0, 1, 2.5, 5, and 10% (w/w). When Zn and gyttja were not added, plants showed leaf symptoms of Zn deficiency and B toxicity, and had a reduced growth. With increased rates of gyttja application, shoot growth of both cultivars was significantly enhanced under Zn deficiency, but not at sufficient supply of Zn. The adverse effects of Zn deficiency and B toxicity on shoot dry matter production became very minimal at the highest rate of gyttja application. Increases in gyttja application significantly enhanced shoot concentrations of Zn in plants grown without addition of inorganic Zn. In Zn‐sufficient plants, the gyttja application up to 5% (w/w) did not affect Zn concentration in shoots, but at the highest rate of gyttja application there was a clear decrease in shoot Zn concentration. Irrespective of Zn supply, the gyttja application strongly decreased shoot concentration of B in plants, particularly in durum wheat. For example, in Zn‐deficient Kiziltan shoot concentration of B was reduced from 385 mg kg?1 to 214 mg kg?1 with an increased gyttja application. The results obtained indicate that gyttja is a useful organic material improving Zn nutrition of plants in Zn‐deficient soils and alleviating adverse effects of B toxicity on plant growth. The beneficial effects of gyttja on plant growth in the Zn‐deficient and B‐toxic soil were discussed in terms of increases in plant available concentration of Zn in soil and reduction of B uptake due to formation of tightly bound complexes of B with gyttja.  相似文献   

16.
Abstract

One proposed mechanism of aluminum (Al)‐tolerance involves the ability of plants to maintain uptake of essential mineral elements in the presence of Al. To examine this hypothesis, taro [Colocasia esculenta (L.) Schott] cultivars (cv.) Lehua maoli and Bun long were grown in hydroponic solution at six initial Al levels (0, 110, 220, 440, 890, and 1330 μM Al), and plant mineral concentrations were determined after 27 days. Increasing Al levels significantly increased Al concentrations in taro leaf blades, petioles, and roots. This increase in Al concentrations in the leaf blades as solution Al levels increased was greater for Al‐sensitive cv. Bun long compared to cv. Lehua maoli, resulting in significant interaction between Al and cultivar effects. However, no significant cultivar differences were found for Al concentrations in the petioles or roots. Increasing Al levels in solution significantly depressed concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and iron (Fe) in taro leaf blades, and significantly depressed concentrations of Ca, Mg, copper (Cu), and zinc (Zn) in taro roots. Aluminum‐induced Ca deficiency appeared to be one possible mechanism of Al phototoxicity in taro, becvasue Ca concentrations in the leaf blades and roots at the higher Al levels were within the critical deficiency range reported for taro. Significant cultivar differences were found, in which Al‐tolerant cv. Lehua maoli had significantly greater Ca and Cu concentrations in the roots, and significantly greater potassium (K) concentrations in the leaf blades across all Al levels. Our results show that Al‐tolerance in taro cultivars is associated with the ability to maintain uptake of essential mineral nutrients, particularly Ca and K, in the presence of Al.  相似文献   

17.
Abstract

Iron‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats (Strategy II plants) differ in their release of phytosiderophore in response to iron‐deficiency stress—the Fe‐efficient Coker 227 releases a phytosiderophore whereas the Fe‐inefficient TAM 0–312 does not. The phytosiderophore released by Coker 227 oats in response to Fe‐deficiency stress does not appear to transport Fe into the plant as Fe phytosiderophore. When the Fe‐inefficient TAM 0–312 and Fe‐efficient Coker 227 oats were subjected to Fe supplied as Fe2+(BPDS)3, Fe3+HEDTA, as Fe3+EDDHA, Coker 227 utilized the Fe more efficiently than TAM 0–312 in every case. Both cultivars reduced Fe3+ as FeCl3 to form Fe2+(BPOS)3 and responded better to this form of Fe than Fe supplied as the ferric chelate. Reduction of Fe3+ at the root appears to be a factor that facilitates iron uptake by Coker 227 oats and the release of a phytosiderophore appears to make more Fe available at the root that can be reduced and transported to plant tops.  相似文献   

18.
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions.  相似文献   

19.
A two‐year lysimeter experiment was conducted using winter wheat plants on two texturally contrasting soils (soil A and soil B). The main objective of this study was to evaluate the influence of increasing doses (5, 10, 15, 20, and 251 ha‐1) of solid phase from pig slurry (SP) on soil extractable copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) and on wheat micronutrients composition and uptake. As the control, a basic dressing of NPK fertilizer was applied. Results showed that increasing additions of SP significantly enhanced extractable Cu, Zn, Fe, and Mn content on the topsoil for both soils tested. In addition, a significant increase was detected for extractable Cu, Zn, and Mn content with increasing application rates of SP for subsoil A, but no significant differences were detected for subsoil B. A significant increase in the contents of Fe, Mn, and Zn in the plants as well as total uptakes were observed from increasing doses of SP. Copper content in the plants was not significantly affected. Finally, a strong pH effect was exerted in the Mn and Zn uptake by the plants.  相似文献   

20.
The effect of soil and foliar application of different iron (Fe) compounds (FeSO4, Fe‐EDTA, Fe‐EDDS, and Fe‐EDDHA) on nutrient concentrations in lettuce (Lactuca sativa cv. Australian gelber) and ryegrass (Lolium perenne cv. Prego) was investigated in a greenhouse pot experiment using quartz sand as growth medium. Soil application was performed in both the acidic and alkaline pH range, and foliar application to plants grown in the alkaline sand only. Lettuce growth was depressed by Fe deficiency in the alkaline sand, whereas the treatments had no effect on ryegrass growth. Soil‐applied Fe compounds raised the Fe concentrations in lettuce. This was especially true for the Fe chelates, which also increased yields. Soil‐applied Fe compounds had no statistically significant effect on Fe concentrations in ryegrass. Concentrations of manganese (Mn) in lettuce were equally decreased by all soil‐applied chelates. In the alkaline sand, soil application of Fe‐EDDHA elevated copper (Cu) and depressed zinc (Zn) concentrations in lettuce. The chelates increased Zn concentration in ryegrass. Foliar application of Fe‐EDDS increased Fe concentrations in lettuce and in ryegrass most. Fe‐EDDHA depressed Mn and Zn concentrations in lettuce more than other Fe compounds, suggesting the existence of another mechanism, in addition to Fe, that transmits a corresponding signal from shoot to roots with an impact on uptake of micronutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号