共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop nitrogen (N) uptake depends on the root absorption area and the soil N availability which are closely related to the soil water status. With the increasing water shortages in the North China Plain, supplemental irrigation (SI) to winter wheat is a promising technique. To clarify the relationships between water and nitrogen use, four SI regimes in Tritcum aestivum L. cv. Jimai 22 were set up: no‐irrigation after emergence (T1), SI at jointing and anthesis (T2), SI at sowing, jointing and anthesis (T3), and SI at pre‐wintering, jointing and anthesis (T4). The results indicate that T2 had higher root length density (RLD) and root surface area density (RAD) in the 0–20, 60–80, and 80–100 cm soil layers, as well as higher post‐anthesis N uptake from soil by 23–26% in 2012–2013 and 162–177% in 2013–2014, compared to T3 and T4. The grain yield under T2 was lower than T3 but was not significantly different from T4, whereas its water use efficiency (WUE) was higher relative to both T3 and T4. There were no significant differences among T2, T3, and T4 in N use efficiency (NUE). The N uptake after jointing and WUE were positively correlated with the RLD and RAD in the 0–20 cm soil layer. The NUE was positively correlated with the RLD and RAD in the 20–40 cm soil layer. These results indicate that timely SI at jointing and anthesis was dependent on a suitable water supply at sowing, which increased the soil water content in the upper soil layer after jointing and improved the absorption area of the roots in both the deep and surface soil layers; this further improved the post‐anthesis N uptake from the soil and the WUE. This approach can be a valuable way to maintain high grain yields and NUE in winter wheat while using less irrigation and achieving higher WUE in the North China Plain. 相似文献
2.
Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high‐Zn seeds were not studied under diverse agro‐climatic field conditions. This study investigated effects of low‐Zn and high‐Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat ( Tritcum aestivum L.), rice ( Oryza sativa L.), and common bean ( Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low‐Zn seeds and no soil Zn fertilization (control treatment), (2) low‐Zn seeds + soil Zn fertilization, and (3) Zn‐biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc‐biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn‐biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn‐biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Zn‐biofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high‐Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high‐Zn grains are a by‐product of Zn biofortification, use of Zn‐enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost‐effective manner. 相似文献
3.
Bacillus velezensis strains, belonging to plant growth‐promoting rhizobacteria (PGPR), are increasingly used as microbial biostimulant. However, their field application to winter wheat under temperate climate remains poorly documented. Therefore, three B. velezensis strains IT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological interaction systems were firstly developed under gnotobiotic and greenhouse conditions combined with sterile or non‐sterile soil, respectively, and finally assayed in the field during two years coupled with different N fertilization rates. Under gnotobiotic conditions, all three strains significantly increased root growth of 14 d‐old spring and winter wheat seedlings. In the greenhouse using non‐sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%). The three strains were able to improve nutrient uptake of the spring wheat grown in the greenhouse, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases in nutrient uptake were dependent on the organs and the elements. The root biomass increases in inoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under field conditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by 983 kg ha ?1, or 14.9%, in relation to non‐inoculated controls. The three strains in the 2015 field trial failed to confirm the previous positive results, likely due to the low temperatures occurring during and after inoculations. The Zeleny sedimentation value, indicative of flour quality, was unaffected by the inoculants. The results are discussed in the perspective of bacterial application to wheat under temperate agricultural practices. 相似文献
4.
Background : Since recently, the traditional rice–wheat rotation systems in Nepal are subject to drastic changes. Progressing urbanisation and shifting consumer preferences drive a replacement of wheat by high‐value vegetables during the cold dry season, particularly in the peri‐urban fringes, while emerging water shortages prevent permanent soil flooding during the monsoon season, leading to partial substitution of lowland rice by less water‐consuming upland crops. Associated changes in soil aeration status affect soil nutrient availability while particularly vegetables enhance the demand for the critically limiting micronutrients boron (B) and zinc (Zn). Aim : In both rice‐ (anaerobic) and maize‐based (aerobic) systems we assessed the differential response of traditional winter wheat in comparison to cauliflower and tomato to applied B and Zn fertilizers. Methods : Experiments were conducted (1) in a pot trial with two contrasting soil types (Acrisol vs. Fluvisol) and (2) in field validation trials at two contrasting sites (representing lowland vs. mid‐hills) in Nepal. Results : The on‐going shift from flooded rice to aerobic maize during the wet season negatively affected dry matter accumulation and grain yield of the dry season wheat, but not of cauliflower and tomato. While Zn application tended to increase wheat yields under field conditions, B application induced no significant effect, irrespective of the soil or production site. However, low to moderate applications of B (2.0–4.4 kg ha ?1) and Zn (3.3–4.4 kg ha ?1) nearly doubled biomass accumulation and nutrient uptake of vegetables and increased the economic yields of cauliflower and tomato between 8 and > 100%. These responses were generally more pronounced in the Fluvisol than the Acrisol. While overall yields of wheat and temperate vegetables were higher in the cool mid‐hills the relative yield responses to applied B were more pronounced in the lowland than the mid‐hill sites. On average, the partial factor productivities of applied fertilizer were low to moderate in wheat, with 1 and 8 € increase in net revenue per € of investment in B and Zn, respectively. In the vegetables, this partial factor productivity increased to about 4 € € ?1 investment with Zn, and reached about 43 € € ?1 investment in B, irrespective of the production site. Conclusions : While the application of Zn fertilizers can moderately improve the performance of traditional rice–wheat rotations, B and to a lesser extent Zn application become essential and highly profitable when shifting towards vegetable cropping. The demand for B and Zn fertilizers is foreseen to dramatically increase with progressing urbanisation and the associated shifts in production systems of Nepal. 相似文献
5.
Background : Nepal's traditional rice–wheat rotation systems are subject to continuing changes. Changing consumer demand currently drives a replacement of wheat by high‐value vegetables during the dry season, while emerging water shortages lead to a substitution of rice by maize in the wet season. Hence, associated changes in soil aeration status and shifting conditions of soil nutrient supply to match crop nutrient demand are expected to increase the requirements for the principle limiting micro‐nutrients such as boron (B) and zinc (Zn). Aim: Our aim was to investigate the changes in B and Zn availability as well as crop yields and nutrient uptake after system shifts from rice to maize and from wheat to vegetables. Method : We analyzed the B and Zn availability in rice‐ and maize‐based systems as well as crop yields and the nutrient uptake by wheat, cauliflower, and tomato during the dry season in Nepal. Plants were grown at two field sites (midhills vs. lowland) and under greenhouse conditions using soils from the field sites. Results : A change from irrigated rice to maize reduced soil C and N contents with resulting decreases in dry season crop yields. Low soil Zn after rice cultivation led to shortage in Zn uptake by vegetables in both greenhouse and field experiments. The shift from wheat to vegetables increased the demand for B and to a lesser extent for Zn, and consequently vegetables showed visual symptoms of B deficiency. Boron concentrations in dry biomass were below the critical limits with < 10 mg B kg ?1 in wheat, < 21 mg B kg ?1 in cauliflower, and < 23 mg B kg ?1 in tomato. Conclusions: Soils in larger parts of Nepal are low in available B and that the ongoing system shifts increase in the demand for B and Zn in the currently emerging and more diversified production systems. 相似文献
6.
Crop productivity in future may be limited due to water scarcity. However, foliar spray of plant growth promoters may boost crop production even in adverse environments. In the present study, foliar application of one natural (moringa leaf extract, 3% MLE) and four synthetic (Polydol, Multisol, Classic, and Asahi Star) were applied at tillering, jointing, booting, and heading growth stages of wheat ( Triticum aestivum L.) during severe, moderate, and light drought and well‐watered condition. No spray and water spray were taken as controls. Results showed significant reduction in growth parameters such as total dry matter production, mean crop growth rate, net assimilation rate, leaf area index, and duration due to drought employed at various phenophases of wheat. However, improvement in these parameters was observed after foliar application of growth promoters, whereas interactive effects between factors were found non‐significant. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were more accelerated under drought treatments from exogenously supplied growth promoters. Foliar application of promoters significantly alleviated drought‐induced reduction of yield and related traits. Grain weight (15%) and grain yield (27%) were improved due to exogenously applied MLE under moderate drought stress treatments relative to controls. Furthermore, 16% higher grain yield and 17% saving of irrigation water over fully irrigated and without promoter treatment (farmers' practice) was recorded from foliar‐applied MLE under skipped irrigation at jointing. In conclusion, foliar‐applied MLE may ameliorate drought‐induced deleterious effects by enhancing antioxidant activities under drought stress. 相似文献
7.
Selenium (Se) is an essential micronutrient for humans, animals, and certain lower plants, but at higher concentrations Se becomes toxic to organisms. The boundary between the Se beneficial effect and its toxicity is narrow and depends on its chemical form, applied concentration, and other environmentally regulating factors. Due to the potential risk of toxicity in higher concentration, the aim of this study was to estimate the impact of increased concentrations of different forms of Se on the response of the wheat–soil–earthworm system. Soil, earthworms, and wheat grains were exposed to the Se in form of selenite and selenate in concentrations of 0.01, 0.1, and 1 mg kg −1. As an indicator of oxidative stress in wheat, lipid peroxidation levels (LPO) and total H 2O 2 content were determined, while antioxidative response was determined by catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) activities. The biomarker responses in earthworms were determined by acetylcholinesterase (AChE), carboxylesterase (CES), and antioxidative enzymes (CAT and glutathione S‐transferase) activities. Selenite and selenate increased Se content in the wheat and earthworms, while selenate application was more efficient, indicating higher bioaccumulation of this Se form. Both Se forms did not cause significant changes in the LPO level and H 2O 2 content, while GPX activities were elevated in all treatments, suggesting that oxidative stress was not induced in wheat. In earthworms, Se significantly reduced activities of AChE and CAT at some concentrations, while CES activity was increased at all concentrations applied. This study showed significant impact of Se on measured biochemical responses in wheat and earthworms, indicating the disruption of homeostasis. Obtained results can serve as basis for further studies on Se effects and will help in including different aspects necessary for understanding of Se impact on different components of soil ecosystems. 相似文献
8.
The present study aimed to test the contribution of the iron (Fe) deficiency‐induced uptake system to zinc (Zn) and copper (Cu) uptake by using bread wheat ( Triticum aestivum cv. Bezostaja). For this purpose, two different uptake experiments, long‐term and short‐term, were set up in a nutrient solution culture under controlled growth chamber conditions. For the long‐term experiment, wheat cv. plants were grown with different concentrations of Fe or Zn. Results show that there was an uptake system induced under Fe‐limiting conditions which also contributed to Zn and Cu uptake. However, the Zn deficiency‐induced uptake mechanism affected neither Fe nor Cu uptake by wheat. Short‐term uptake experiments indicate that Fe deficiency‐induced Zn 2+ uptake was more enhanced than the absorption of Zn‐phytosiderophore (PS) complexes. In addition, the Fe‐deficient plants absorbed more Zn in comparison to those plants supplied with sufficient Fe. Similar tendencies in Zn uptake under Fe deficiency in both short‐ and long‐term experiments suggest that there may be a specific Fe uptake system induced under Fe‐limiting conditions for non‐chelated metals in bread wheat. Moreover, this system also contributes to the transport of inorganic forms of some other metals, such as Zn and Cu. Although evidence is still needed involving the use of molecular biological techniques, it is hypothesized that IRT‐like proteins are responsible for this uptake system. Moreover, the release of Fe deficiency‐induced phytosiderophores and uptake of Fe(III)‐phytosiderophore complexes may not be the only mechanisms involved in the adaptation of wheat to Fe‐limiting conditions. 相似文献
9.
Abstract The diurnal rhythm of release of phytosiderophores and uptake rate of zinc (Zn) was studied in iron (Fe) deficient wheat ( Triticum aestivum L. cv. Ares) plants grown in nutrient solution under controlled environmental conditions. Different forms of Zn (e.g. ZnSO 4, ZnEDTA) were used to obtain different degrees of loading of the root apoplasmic pool with Zn. In the Fe-deficient plants the release of phytosiderophores from the roots followed a distinct diurnal rhythm with a steep peak about 4 h after the onset of the light period. These plants also showed a similar pattern in the rates of Zn uptake over the 24 h day-night cycle. During the light period there was a steep transient peak (factor 3.8) in Zn uptake rate in the Fe-deficient plants supplied with ZnSO 4. This transient peak was much less distinct in plants supplied with ZnEDTA (factor 1.8) and absent in plants supplied with ZnEDTA plus free chelator (+ NaEDTA) in excess. The peak in Zn uptake coincided with the maximum rate of phytosiderophore release in the Fe-deficient plants. In the Fe-sufficient plants the release of phytosiderophores was very low and no such peak in Zn uptake rates could be observed. These results demonstrate that phytosiderophores mobilize Zn not only in the rhizosphere, but also from the root apoplast. Thus, the apoplasmic pool of micronutrient cations has to be taken into account as potential source for both uptake and diurnal variation in uptake rates of Micronutrient cations. 相似文献
10.
Abstract A greenhouse experiment was conducted to investigate the effect of root growth and exudation of 3 crop species on soil aggregation. Two plant populations for each of 3 crops (corn, soybeans, and wheat) were grown in a Fincastle silt loam for 5 time periods (7, 14, 21, 28, and 41 days) and compared with fallow controls. Aggregate stability was estimated by the wet‐sieve method on both initially moist and air‐dry samples. Soil water content of initially moist soil samples varied widely among replicates, crops, and sampling dates. Wet‐sieving using initially moist soil showed that samples with higher initial soil water content had greater aggregate stability. Wet‐sieving performed on initially air‐dry soil samples was used for subsequent interpretation because the water content variable was removed. The presence of any crop and its roots in the planted soils versus the fallow controls was associated with increases in aggregate stability. No differences in aggregate stability were found among the different crops or over the established range of root length densities. Aggregate stability decreased from the original level during the first 14 to 21 days of the experiment, possibly due to daily watering. After 21 days, as root growth continued to increase, restabilization occurred until the original aggregate stability of the soil was exceeded for all crops. The observed increase in aggregate stability may be due in part to the physical entanglement of aggregates by roots and to the increased production of root exudates resulting from increased root growth. 相似文献
12.
The nitrogen (N) utilization efficiency in hydroponically grown durum wheat was dissected during nitrate depletion at post‐flowering stage. Feeding plants with low nitrate dose after anthesis lowered photosynthetic activity, triggered senescence, but induced N remobilization from vegetative parts. At harvest, tissue N concentration was 50% and 80% less important in leaves and culms, respectively, but similar in grains of N‐deficient plants compared with control ones. 相似文献
13.
The root-borne C- and N-flux in the plant/soil system was studied by determining the 14C- or 15N-balances in pot trials with soil as a substrate ( 14CO 2- or 15NH 3-application to the shoots, comparison of sterile and nonsterile treatments for quantification of root-borne substances). The following results were obtained: 1. The amount of (primary) root-borne carbon compounds released into soil was (besides root respiration) 11—20% of net-CO 2-assimilation or 13—32% of the 14C incorporated into the plants (= 1 t C · ha —1). 5—6% of 15N assimilated by the plants were released as root-borne N compounds (= 15 kg N · ha —1). 2. A considerable portion of the root-borne C (about 6% = 600 kg C · ha —1) was found in the rooted soil zone at the end of the experiments (rhizodeposition). 3. (Primary) root-borne C and N compounds found in immediate vicinity of the roots (about 60—80%) were mainly water soluble, whereas most of the C and N compounds found in a greater distance were water insoluble. The water soluble exudates consisted mainly of neutral (carbohydrates) and acid fractions (organic acids). The basic fraction (amino acids) made up a small portion only. 4. The root-borne C and N compounds influenced the nutrient balance of soil and plant directly and/or indirectly via microbes (depending on species, variety and nutritional status of plants). 5. Microbes stimulated the release of C- and N-compounds, but rapidly respired 65—85% of the root-borne C-compounds, thereby putting a burden on the C-budget of the “host” plant. 6. It could be shown by the example of hup + Rhizobium meliloti strains (tested by 3H 2-incorporation) and the wheat- Serratia-association, that energy efficient microbenplant systems can improve plant performance. 相似文献
14.
High zinc (Zn) concentration of seeds has beneficial effects both on seed vigor and human nutrition. This study investigated the effect of Zn biofortification on growth of young durum wheat ( Triticum durum cv. Yelken) seedlings under varied Zn and water supply. The seeds differing in Zn concentrations were obtained by spraying ZnSO 4 to durum wheat plants at different rates under field conditions. Three groups of seeds were obtained with the following Zn concentrations: 9, 20, and 50 mg Zn kg ?1. The seeds differing in Zn were tested for germination rate, seedling height, shoot dry matter production, and shoot Zn concentration under limited and well irrigated conditions in a Zn‐deficient soil with and without Zn application. In an additional experiment carried out in solution culture, root and shoot growth and superoxide dismutase activity (SOD) of seedlings were studied under low and adequate Zn supply. Low seed Zn concentration resulted in significant decreases in seedling height both in Zn‐deficient and sufficient soil, but more clearly under water‐limited soil condition. Decrease in seed germination due to low seed Zn was also more evident under limited water supply. Increasing seed Zn concentration significantly restored impairments in seedling development. Drought‐induced decrease in seedling growth at a given seed Zn concentration was much higher when soil was Zn‐deficient. Increasing seed Zn concentration also significantly improved SOD activity in seedlings grown under low Zn supply, but not under adequate Zn supply. The results suggest that using Zn‐biofortified seeds assures better seed vigor and seedling growth, particularly when Zn and water are limited in the growth medium. The role of a higher antioxidative potential ( i.e., higher SOD activity) is discussed as a possible major factor in better germination and development of seedlings resulting from Zn‐biofortified seeds. 相似文献
15.
Aluminum (Al) occurs abundantly in soil and solubilized aluminum ions in acid soil inhibit plant growth, in particular, root growth. Although several toxic effects of Al on plant growth have been reported, the mechanism of Al toxicity remains to be clarified. 相似文献
16.
An understanding of the phosphorus, P, uptake characteristics of plant roots is important for developing practices that improve P fertilizer efficiency. Phosphorus uptake by plant roots is influenced by plant root properties and solution P level. Since little information about the nutrient uptake characteristics of spring wheat ( Triticum vulgare L.) roots is available, this research was undertaken with wheat to determine the relation between the proportion of the roots supplied with P on P influx and root growth characteristics. An experiment was conducted with wheat plants grown in solution culture in a controlled climate chamber. Phosphorus uptake kinetics were measured on 30‐day‐old wheat using split‐root experiments. Supplying P to only part of the root system resulted in lower plant P concentration and higher Imax(maximum influx) by the roots. The Imax value of wheat roots was much lower than corn (Zea mays L.) and soybeans (Glycine max L.), but the values of Km (the solution P concentration where influx, In is 1/2 Imax) and Cmin (the solution P concentration where influx, In is 1/2 Imax) were greater than those of both corn and soybean crops grown in similar experiments. Phosphorus concentrations in wheat plant's shoots and roots were higher than those for corn and soybean with the same proportions of roots in P solution. Decreasing the proportion of the roots supplied with P had no statistically significant (p = 0.05) effect on shoot dry weight. This differs from the results for corn and soybeans where it decreased significantly as the proportion of the roots exposed to P decreased. These results indicate that the effect of P placement on P uptake and on plant root growth varied among species. 相似文献
17.
Cadmium (Cd) is a major pollutant in soils as a result of extensive use of fertilizers, mining and industrial discharges. Zinc (Zn) and certain bacterial species have been known to alleviate Cd toxicity in plants. In this study, the individual and combined effects of the application of Zn and Pseudomonas species with the aim of reducing Cd stress in wheat cultivars were investigated. Plants (durum wheat and bread wheat) were exposed to different concentrations of Cd and Zn, and either P. putida or P. fluorescens in a growth chamber. Concentrations of Zn, Cd, chlorophyll (Chl), carotenoid, hydrogen peroxide (H 2O 2), and malondialdehyde (MDA), as well as antioxidant enzyme activities were assayed. The addition of Zn in soils reduced the toxicity of Cd in durum wheat more than in bread wheat even though there was more uptake of Zn in bread wheat. Analysis of variance showed that by using Zn fertilizer and Pseudomonas species the amounts of peroxidase (POD), polyphenoloxidase (PPO), MDA, and H 2O 2 were reduced at three growth stages. Surprisingly, with increasing Zn concentration, Cd concentration in plant tissue was slightly increased, which suggests that adding Zn to soil could facilitate Cd desorption from soil particles. Application of Pseudomonas and Zn could be a promising solution to reduce detrimental effects of Cd, especially in durum wheat. 相似文献
18.
Increased application of nitrogen fertilizers has significantly raised grain yield and protein concentration in wheat. However, only 30–50% of applied fertilizer nitrogen are usually utilized by the plant. In this study, four soft red winter wheat genotypes ( Triticum aestivum L., IL07‐4415, MD05W10208‐11‐8, OH06‐150‐57 and Sisson) were grown under three different nitrogen regimes (high, medium, and low) in a greenhouse, and grain yield, grain protein concentration, nitrogen use efficiency (NUE) and their associated traits were evaluated. Among the four genotypes, a high‐yielding cultivar, Sisson, exhibited superior performance in terms of grain weight plant −1 and NUE for yield (NUEY) at low nitrogen due to maintained grain number spike −1 and harvest index. Significant yield losses due to nitrogen limitation were attributable to reduced spike number plant −1 and grain number spike −1 in the other genotypes. Interestingly, a linear relationship between NUEY and NUE for grain protein (NUEP) was detected at high ( R 2 = 0.67) and low ( R 2 = 0.42) nitrogen; both of these traits were positively correlated with grain number spike −1, 1000‐seed weight, and harvest index under nitrogen‐limited conditions ( R 2 = 0.35–0.48). These results suggest that simultaneous improvement of NUEY and NUEP could be achieved through the selection of the three yield components (grain number spike −1, 1000‐seed weight, and harvest index) at low nitrogen. 相似文献
19.
This study determines the impact of biochar, as a supplement, on soil nutrient availability and yields for three crops within commercial management systems in a temperate environment. Central to the suggestion of biochar benefits is an increase in soil nutrient availability, and here, we test this idea by examining crop nutrient uptake, growth and yields of field‐grown spring barley, strawberry and potato. Biochar produced from Castanea sativa wood was incorporated into a sandy loam soil at 0, 20 and 50 t/ha as a supplement to standard crop management practice. Fertilizer was applied normally for each of the three crops. The biochar contained substantial concentrations of Ca, Mg, K, P, but only K occurred at high concentration in water‐soluble analysis. The large concentration of extractable K resulted in a significant increase of extractable K in soil. The increased availability of K in biochar‐treated soil, with the exception of spring barley grain and the leaves of strawberry during the second year, did not induce greater tissue concentrations. In general, biochar application rate had little influence on the tissue concentration of any nutrient, irrespective of crop or sampling date. There was, however, evidence of a biochar‐induced increase in tissue Mo and a decrease in Mn, in strawberry, which could be linked to soil alkalinization as could the reduction in extractable soil P. These experiments show a single rotational application of biochar to soil had no effect on the growth or harvest yield of any of these field‐grown crops. Heavy metal analysis revealed small concentrations in the biochar (i.e. <10 μg/g biochar), with the largest levels for Ni, V and Cu. 相似文献
20.
Zinc biofortification of staple food crops is essential for alleviating worldwide human malnutrition. Agronomic interventions to promote this should include fertilizer selection and management. A chelated Zn source, Zn‐EDTA, and an inorganic Zn source, ZnSO 4 × 7 H 2O, were applied either by banding or by broadcasting in soil, and Zn fractions in soil and Zn uptake by wheat were determined in a pot experiment. Compared to ZnSO 4 × 7 H 2O, Zn‐EDTA produced higher Zn concentration in grain regardless of application method and even at a lower application rate. Residual Zn fraction was the largest Zn fraction with both ZnSO 4 and Zn‐EDTA amendment. ZnSO 4 banded in soil caused Zn fractions to be restricted to the Zn‐amended soil band and resulted in lower grain Zn concentrations than did broadcast ZnSO 4. Planting wheat slowed Zn fixation by promoting the maintenance of a high concentration of Zn fraction loosely bound to organic matter (LOM‐Zn) in soil. Zn‐EDTA was a better Zn source for Zn biofortification of wheat than was ZnSO 4. 相似文献
|