首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Protected horticultural crops as well as those planted in open fields particularly in the Mediterranean region have to cope with increasing salinization of irrigation water. High salinity of the supply water has detrimental effects on soil fertility and plant nutrition and reduces crop growth and yield. This study was conducted to determine if pre-inoculation of transplants with arbuscular mycorrhizal (AM) fungi alleviates salt effects on growth and yield of tomato (Lycopersicon esculentum Mill. Cv. Marriha) when irrigated with saline water. Tomato seeds were sown in polystyrene trays with 20 cm3 cells and treated with AM fungi (AM) or without (nonAM) Glomus mosseae. Once the seedlings were reached appropriate size, they were transplanted into nonsterile soil in concrete blocks (1.6 m × 3 m × 0.75 m) under greenhouse conditions. The soil electrical conductivity (ECe) was 1.4 dS m−1. Plants were irrigated with nonsaline water (ECw = 0.5 dS m−1) or saline water (ECw = 2.4 dS m−1) until harvest. These treatments resulted with soil EC at harvest 1.7 and 4.4 dS m−1 for nonsaline and saline water treatments, respectively. Root colonization with AM fungi at flowering was lower under saline than nonsaline conditions. Pre-inoculated tomato plants with AM fungi irrigated with both saline and nonsaline water had greater shoot and root dry matter (DM) yield and fruit fresh yield than nonAM plants. The enhancement in fruit fresh yield due to AM fungi inoculation was 29% under nonsaline and 60% under saline water conditions. Shoot contents of P, K, Zn, Cu, and Fe were higher in AM compared with nonAM plants grown under nonsaline and saline water conditions. Shoot Na concentrations were lower in AM than nonAM plants grown under saline water conditions. Results indicate that pre-inoculation of tomato transplants with AM fungi improved yield and can help alleviate deleterious effects of salt stress on crop yield.  相似文献   

2.
Water logging and salinity of the soil alter both the physical and biological environment of plant roots. In two experiments, we investigated the effects of imposed aeration on yield and the physiological response of tomato (Lycopersicon esculentum L.) variety Improved Apollo growing under protected conditions over a range of salinities (the salinity experiment), and under constant field capacity (FC) or drier soil conditions (the moisture experiment). Subsurface irrigation with aerated water (12% air in water) stimulated above-ground growth, and enhanced the reproductive performance through earliness for flowering and fruiting compared with the control. Fruit yield of tomato with aeration in the moisture experiment was increased by 21% compared with the control (4.2 kg versus 3.7 kg per plant), and the effect of aeration on fruit yield was greater in FC than in the drier treatment. Fruit yield was increased by 38% in saline soil due to aeration compared with the non-aerated control. Increasing salinity from 2 to 8.8 dS m−1, and 10 dS m−1 reduced fruit yield by 18% and 62%, respectively, but 4 dS m−1 did not suppress yield. Aeration in both the experiments increased plant water use and water use efficiency (WUE), expressed as weight per unit of applied water. Biomass WUE was greater by 16% and 32% in the moisture and salinity experiments, respectively. The increased yield with aeration was also accompanied by an increased harvest index (HI) defined as the proportion of dry fruit biomass to total dry biomass, greater mean fruit weight, high fruit DM, and increase in leaf chlorophyll content and shoot: root ratio, and a reduced water stress index (computed from the difference between air and leaf temperature). The benefit gained from aerating irrigation water was not only observed under conditions where air-filled porosity may be low (e.g., in poorly structure sodic soils, or at field capacity in clay soils), but also in drier soils.  相似文献   

3.
Salt tolerance of five cultivars of Capsicum annuum L. Early Jalapeno, Golden Treasure, NuMex Sweet, NuMex Joe E. Parker, and Santa Fe Grande, two cultivars of C. chinense Jacq. Habanero and Pimienta De Chiera, and one accession of C. annuum, NMCA 10652, were evaluated in a field study. Seedlings were transplanted in late May to field raised beds containing loamy sand soils in a semi-arid environment. Plants were well irrigated throughout the experiment. Three saline solution treatments, prepared by adding NaCl, MgSO4, and CaCl2 to tap water at different amounts to create three salinity levels of 0.82 dS m−1 (control, tap water), 2.5 dS m−1, and 4.1 dS m−1 electrical conductivity (EC), were initiated on 15th June and ended in late August. Among the eight varieties, NMCA 10652 had the highest survival percentage at 100% in the 4.1 dS m−1 treatment, followed by ‘Early Jalapeno’, ‘NuMex Sweet’, ‘Pimienta De Chiera’, ‘Santa Fe Grande’, ‘Golden Treasure’, and ‘NuMex Joe E. Parker’. ‘Habanero’ had the lowest survival at 28%. Compared to control, final shoot dry weight of the plants irrigated with saline solution at 4.1 dS m−1 was reduced by 92% in ‘Habanero’, followed by ‘Golden Treasure’ at 80%. For fruit fresh weight in 4.1 dS m−1 vs. control, ‘Habanero’ had the highest reduction at 86%, followed by ‘Golden Treasure’ at 74%, while NMCA 10652 and ‘Santa Fe Grande’ had the least at 26% and 19%, respectively. NMCA 10652, the most tolerant to salinity, had the lowest leaf Na+ accumulation, while ‘Habanero’, the most sensitive to salinity, had the highest Na+ in the leaves. For leaf Cl, ‘Early Jalapeno’ had the highest, while ‘Habanero’ had the lowest Cl accumulation in the leaves. Generally, sensitive varieties accumulated more Na+ and/or Cl in leaves, except for ‘Early Jalapeno’, which was relatively tolerant to salinity but had high Na+ and Cl accumulation in leaves.  相似文献   

4.
In closed-loop soilless culture, one of the most relevant problems may be the accumulation in the recirculating nutrient solution of ions contained in irrigation water that are not or scarcely absorbed by the plants (e.g. Na, Cl) In order to verify the possibility to reduce the rate of recirculating water salinisation by means of subirrigation, an experiment was carried out in the spring of 2002 and 2004, with tomato plants (cv. Jama) grown in glasshouse and watered by conventional drip irrigation (D) or by subirrigation (trough bench system; S). The plants were cultivated in pots filled with a peat-perlite substrate for approximately 3 months and fed with complete nutrient solution, which was prepared with fresh water containing 10 mol m−3 NaCl; the nutrient solution in the collecting tank was replaced when the value of electrical conductivity (EC) exceeded 6.0 dS m−1. Water and nutrient crop use, salt accumulation in the substrate, and fruit yield were monitored. In S culture, the composition and EC of the recirculating nutrient solution changed slightly, while in D treatment there was a fast water salinisation that made it necessary to flushed out the nutrient solution in six different occasions, with consequent loss of water and fertilisers. In S culture, the upward water movement in the substrate, coupled with selective mineral uptake by the roots, caused salinity build-up in the upper region of the substrate, which was associated with Na+ accumulation. No significant influence of irrigation methods on fruit yield and quality was observed. These findings suggest that subirrigation can be a tool to reduce the water consumption and nutrient runoff in closed-loop substrate culture of tomato conducted with saline water.  相似文献   

5.
Closed cycle soilless techniques can be adopted to minimize water and fertilizer losses in greenhouse cultivation. There is a general lack of information regarding the soilless cultivation of vegetables with closed cycle subirrigation techniques, specifically when using saline water. In this study, a trough bench subirrigation system (SUB), with two fertilizer concentrations (“100%”, containing 9.8 mol m−3 N-NO3, 1.6 mol m−3 P-H2PO4, 8.7 mol m−3 K+, 2.8 mol m−3 Ca+, 1.8 mol m−3 Mg+, 4 mol m−3 S-SO4, and “70%”, containing 70% of the macronutrient concentration) in the nutrient solution (NS), was compared with open cycle drip-irrigation (DRIP with “100%” NS). For all the three treatments, NS was prepared using rain water (0.05 dS m−1) and adding NaCl (1 g L−1), in order to simulate moderate saline irrigation water. The effect of the treatments on tomato (Solanum lycopersicum L.) plant growth, yield, fruit quality, water use efficiency (WUE) and fertilizer consumption was evaluated. Substrate and recirculating NS composition were also studied. Subirrigation, regardless of NS concentration, reduced plant height (by 30 cm), leaf area (by 1411 cm2), total fresh and dry weight (by 429 and 48.5 g plant−1, respectively) but not dry matter percentage of the whole plant, with respect to DRIP. Yield was reduced when plants were subirrigated with the higher concentrated NS, but no differences with open cycle DRIP were recorded when the lower NS concentration was used in SUB. Fruit quality was not affected by irrigation system or NS concentration. The higher WUE was obtained with subirrigation. NaCl accumulated similarly over the crop cycle in recirculating NS of both SUB treatments and in growing substrates of all the three treatments. Higher salt concentration was found in subirrigated substrates, in particular in the upper part of the substrate profile. Fertilizers accumulated in the subirrigated substrates when the higher NS concentration was used, but not when the NS concentration was reduced by 30%. The results of this study indicate that tomato can be grown successfully in a closed cycle subirrigation system, using saline water, by reducing the fertilizer NS concentration normally used with traditional open cycle systems.  相似文献   

6.
Plant production under salinity requires increased capacity for K+ homeostasis. For this purpose, supplementary K2SO4 in the nutrient solution and grafting on a tolerant rootstock were employed in two experiments to test whether grafting, potassium and their interactions can alleviate salinity stress in tomato (Solanum lycopersicum L.). In Exp-ion, plants were cultivated for 122 days to compare different ionic compositions: EC 9 dS m−1 in ECall (by macro-nutrients) and in ECNaCl (by 64.2 mM NaCl), EC 12 dS m−1 in ECK (ECNaCl + 25.8 mM K+). Exp-K+ was established to compare K+ concentrations of 6, 16 and 36 mM at 150 mM NaCl. In both Experiments, ‘ZS-5’, selected as a salt sensitive cultivar, was either self-grafted or grafted onto the cultivar ‘Edkawi’, reported as salt tolerant. Yield and growth, minerals, gas exchange, soluble sugars, and proline were analyzed. Different ionic treatments affected almost all characteristics considered while differences between rootstocks were rarely observed. No pronounced differences were found in shoot growth, yield and gas exchange between ECall and ECNaCl. ECK did not show any salinity alleviative effects but inhibited even growth compared with the other treatments. In Exp-K+, 16 mM K+ increased plant growth, leaf soluble sugars and proline concentrations. 36 mM K+ did not further reduce upper leaf Na+ although leaf K+ concentration increased significantly. The results indicated that the response of tomato plant to NaCl stress was principally attributed to the osmotic component in Exp-ion, excessive K+ showed no mitigating effect on fruit yield and shoot growth. However, 16 mM K+ in the root environment enhanced the salt adaptive capacity of plants stressed at 150 mM NaCl. The use of the tolerant rootstock resulted in no ameliorative effects, owing to its susceptibility to blossom-end rot, failure in enhancing photosynthesis, and ineffectiveness of restraining the long-distance transport of Na+.  相似文献   

7.
Tomato (cv. Durinta) plants were grown hydroponically under two electrical conductivities (EC, 2.3 and 4.5 dS m−1) of nutrient solution inside a greenhouse. The high EC treatment was initiated either immediately after anthesis (high EC treatment) or 4 weeks after anthesis (delayed high EC treatment). Fruits were harvested weekly beginning 2 weeks after anthesis, until all fruits reached the red stage (8 weeks after anthesis). Lycopene, chlorophyll, sugar and total soluble solid (TSS) concentrations of fruits were measured every week for all harvested tomatoes from the different ripeness stages. The results showed that lycopene concentration, fructose and glucose concentrations and TSS of red ripe tomato fruits were enhanced by both high EC and delayed high EC treatments compared to those in the low EC treatment. The lycopene concentration of red ripe tomato fruits in the high EC and the delayed high EC treatments showed an increase of 30–40% (1.29–1.39 mg g−1 dry matter) compared to those in the low EC treatment (0.99 mg g−1); however, there was no significant difference in the lycopene concentration between the high EC and delayed high EC treatments. TSS of red ripe tomato fruits grown in the high EC treatment was 6.1%, significantly greater than those grown in the delayed high EC treatment (5.7%). Weekly change in lycopene concentration indicated that lycopene synthesis was enhanced by the high EC treatment, regardless of the application timing. Regardless of EC treatment, chlorophyll concentration in fruit declined linearly during fruit development and ripening and reached non-detectable levels 7 weeks after anthesis. Our results indicated that: (1) accumulation of sugars and TSS in fruit was due to reduced water flux to the fruit under high EC as previously reported, and (2) lycopene synthesis was promoted by, but chlorophyll degradation was independent from, the osmotic and/or salt stress caused by the high EC.  相似文献   

8.
We investigated the hypothesis that split root fertigation (SRF) approach could provide complementary benefits over traditional fertigation (TF) in terms of water use, vegetative growth and yield formation in the high radiation season and under two atmospheric conditions in a greenhouse. Plants of cucumber (Cucumis sativus L. cv. Cumuli) were grown in a traditional high-wire cultivation system in a peat growing medium. In the SRF method the root system of a plant was separated into two compartments over the crop cycle. One compartment received fertigation solution with low EC (1.2 dS m−1) and the other compartment solution with high EC (3.5 dS m−1) value. In the TF method the EC value of fertigation solution was 2.4 dS m−1. The atmospheric conditions included an open (ventilated) and a semi-closed (cooled) greenhouse. The employment of cooling resulted in an enhancement of the average CO2 in a semi-closed (810 ppm) over an open (530 ppm) greenhouse resulting in a yield improvement (37%). SRF improved water uptake in both atmospheric conditions and water use efficiency (WUE) in an open greenhouse. The water uptake in SRF was highest in the root part with the low EC values, namely 61% in the open and 66% in the semi-closed greenhouse. In both atmospheric conditions, SRF decreased flower abortion, leading to an improved fruit set with a small effect on vegetative growth. SRF increased yield by 21% in the open and 17% in the semi-closed greenhouse compared to TF in corresponding greenhouses.  相似文献   

9.
This study examines the feasibility of using saline irrigation water for commercial pot cultivation of three ornamentals: Calceolaria hybrida, Calendula officinalis and Petunia hybrida. Two saline treatments were assayed: irrigation with low saline tap water (electrical conductivity = 1.16 dS m−1), and irrigation with a high saline solution of NaCl 100 mM + CaSO4 10 mM + MgSO4 2.5 mM (electrical conductivity = 12.5 dS m−1). When the control plants reached marketable size the watering was stopped and the plant response to drought was studied. Petunia and Calceolaria were tolerant to salinity. Petunia saline-treated plants reduced their growth slightly and increased N and chlorophyll contents in the leaves. Calceolaria experienced a strong reduction in growth and a delay in flowering but no toxicity symptoms or mortality was recorded. These species were moderate NaCl accumulators. Calendula was sensitive to salinity: 16% of the plants died and the surviving ones experienced a heavy reduction of growth, a decrease in chlorophyll and a large accumulation of NaCl in the leaves. Saline pre-conditioned plants of Calceolaria and Petunia were tolerant to drought. In these plants, leaf water content and, specifically, leaf relative water content were sustained longer than in non-pre-conditioned plants throughout the drought period. In Calendula, leaf relative water content decreased at the same rate in pre-conditioned and non-pre-conditioned plants. Consequently, salinization did not confer drought resistance upon this species. Possible factors determining the tolerance to drought in saline pre-conditioned plants are discussed.  相似文献   

10.
The effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on tomato fruit growth and cell wall peroxidase activity in tomato exocarp were investigated in growth chamber conditions. The RDI treatment was 50% of water given to fully irrigated (FI) plants and the PRD treatment was 50% of water of FI plants applied to one half of the root system while the other half dried down, with irrigation shifted when soil water content of the dry side decreased 15–20%. RDI significantly reduced fruit diameter, though PRD reduced fresh weight while having no significant effect on fruit diameter. The activity of peroxidase was significantly higher in RDI and PRD treated plants compared to those of FI. Differences between RDI and PRD were expressed on temporal basis. In the fruits of RDI treated plants peroxidase activity began to increase in the phase when fruit growth started to decline with the peak of enzyme activity of 6.1 HRPEU g−1 FW reached in the phase of mature green fruits when fruit growth rate was minimal. Increase of peroxidase activity in PRD fruits coincided with the ripening phase and the peak of enzyme activity (5.3 HRPEU g−1 FW) was measured at the end of fruit ripening. These data potentially identified contrasting and different roles of tomato exocarp cell wall peroxidase in RDI and PRD treated plants. In RDI treated plants peroxidase may have a role in restricting fruit growth rate, although the increase in enzyme activity during ripening of PRD treated fruit pointed out that peroxidase may also control fruit maturation by inducing more rapid process.  相似文献   

11.
Flower heads of Calendula officinalis L. are used for medicinal or culinary purposes. Since Egyptian agricultural lands contain salt, this study investigated the effects of saline irrigation water on yield (fresh and dry weights of flower heads), essential oil (EO) yield, chemical constituents of the EO and total flavonoids and carotenoids of flower heads at three flowering stages, i.e. initial (21 days after bud formation (DABF)), full flowering (81 DABF) and final (111 DABF). After plants were treated with different levels of saline irrigation water (0.39, 1.56, 3.13, 4.69, 6.25, 7.81 and 9.38 dS m−1) consisting of NaCl, CaCl2 and MgCl2 salts, the flower head yield and pigment (total flavonoids and carotenoids) content were significantly reduced. Irrigation with saline water increased the EO content and its main components (α-cadinol, γ- and Δ-cadinene). Fresh and dry weights of flower heads and EO increased near 81 DABF while the content of pigments increased by 111 DABF.  相似文献   

12.
Data on the growth-promoting effects of Azospirillum on lettuce exposed to either normal or saline conditions, is scarce. Lactuca sativa L., cv Mantecosa seeds were colonized with A. brasilense Sp245 cells during imbibition. Germination percentages were determined after 7 d treatments with 0, 30, 50 or 80 mol m−3 NaCl. In another experiment, seeds germinated in Hoagland were irrigated for 30 d with 0, 30, 50 or 80 mol m−3 NaCl supplemented media. Vegetative growth proceeded in a growth chamber with a 13–11 h day–night cycle. Buffer-imbibed seeds were considered non-inoculated controls. Plant samples were taken at 0, 14, 20, and 30 d after the onset of NaCl treatments and dissected in aerial and root portions. The weights of both tissues were measured. Azospirillum-inoculated seeds had significantly higher germination percentages than controls in all treatments. Inoculated dried seeds stored up to 30 d maintained such characteristic in most of the treatments, particularly at 80 mol m−3 NaCl. Plants grown from inoculated seeds and irrigated with saline media displayed higher total fresh and dry weights and biomass partition to the aerial portion, than non-inoculated controls. Azospirillum-inoculated lettuce seeds had better germination and vegetative growth than non-inoculated controls after being exposed to NaCl.  相似文献   

13.
Soil solarization, used to control weeds and soil-borne pathogens in hot climates, has not yet been widely adapted as a commercial practice because of its lack of efficacy. Experiments were carried out in southern Italy over two growing seasons to study the effect of three levels (0, 0.35 and 0.7 kg m−2) of organic supplementation of the soil prior to solarization on soil mineral availability and fruit quality attributes. Soil temperature and chemical properties were monitored, together with changes in the physical characteristics and chemical composition of tomato fruits grown under commercial greenhouse conditions. Organic supplementation increased the soil temperature achieved through solarization by 3.9 to 5.5 °C. Organic supplementation increased (P ≤ 0.05) the soil concentration of NO3-N, exchangeable K2O, Ca2+, Na+ and Mg2+ and the level of electrical conductivity in the soil extract. Physical characteristics of tomato fruits were improved by supplementation, with fresh and dry weight enhanced up to 11 and 21%, respectively, mesocarp thickness up to 19%, firmness up to 36% and skin redness (a*/b* ratio) up to 24%. As the supplementation rate was raised from 0 to 0.7 kg m−2, the fruit content of reducing sugars increased (P ≤ 0.01) from 1.75 to 2.14 g per 100 g f.w., ash from 0.49 to 0.62%, soluble solid from 5.12 to 6.18 °Brix, titratable acidity from 0.16 to 0.19%, and ascorbic acid from 25.1 to 32.5 mg 100 mL−1. We concluded that organic supplementation appears to be a valuable and environmentally friendly way to improve the mineral availability in the soil and improve fruit quality of tomato.  相似文献   

14.
To investigate the feasibility of using salt tolerant rootstock to increase fruit yield and quality of cucumber under NaCl stress, a greenhouse experiment was carried out to determine fruit yield, leaf relative water content, fruit quality, and mineral composition of cucumber plants (Cucumis sativus L. cv. Jinchun No. 2), either self-grafted or grafted onto the commercial salt tolerant rootstock Figleaf Gourd (Cucurbita ficifolia Bouche) and Chaofeng Kangshengwang (Lagenaria siceraria Standl). Plants were grown in a substrate culture (peat:vermiculite:perlite = 1:1:1, v/v) and irrigated with half-strength Hoagland solutions containing 0, 30, or 60 mM NaCl. The results showed that salinity significantly reduced fruit yield of cucumber owing to a decrease both in mean fruit weight and fruit number. Rootstock had no significant effect on leaf relative water content. Plants grafted onto Figleaf Gourd and Chaofeng Kangshengwang had higher fruit number, marketable and total fruit yield than those of self-grafted plants under 0, 30, and 60 mM NaCl, which could be attributed to, at least in part, the higher K+ but lower Na+ and/or Cl contents in the leaves. Salinity improved fruit quality by increasing fruit dry matter, soluble sugar, and titratable acidity contents of all the plants, but had no significant effect on vitamin C content. In comparison to the self-grafted plants, plants grafted onto Figleaf Gourd and Chaofeng Kangshengwang had an overall improved fruit quality under NaCl stress owing to an increase in contents of soluble sugar, titratable acidity, and vitamin C, and a decrease in the percentage of non-marketable fruit and Na+ and/or Cl contents of fruits in comparison to the self-grafted plants, mainly under 60 mM NaCl. Overall, it is suggested that the use of salt tolerant rootstock could provide a useful tool to improve fruit yield and quality of cucumber under NaCl stress.  相似文献   

15.
The effects of night interruption (NI) were examined on the vegetative growth and flowering of Cymbidium ‘Red Fire’ and ‘Yokihi’. Plants were grown under 9/15 h ambient light/dark (control), 9 h ambient light plus night interruption (22:00–02:00 h) with low light intensity at 3–7 μmol m−2 s−1 (LNI) and 9 h ambient light plus NI with high light intensity at 120 μmol m−2 s−1 (HNI) conditions. The number of leaves, leaf length, number of pseudobulbs and pseudobulb diameter increased in both LNI and HNI compared to controls for both cultivars. While none of the control plants flowered within 2 years, 100% of the ‘Yokihi’ and 80% of the ‘Red Fire’ plants grown under HNI condition flowered. In the LNI group, 60% of the plants flowered in both cultivars. Plants in the HNI group showed a decreased time to visible inflorescence and flowering than those in the LNI group. The number of inflorescences and florets were greater in the plants grown under HNI than those in the LNI group. The tallest plants at flowering were in the HNI group in both cultivars. NI with low light intensity can be used effectively to promote flower induction with increased growth rate during the juvenile stage in Cymbidium. To obtain high quality plants, however, NI with high light intensity strategies should be considered.  相似文献   

16.
The effects of mean daily temperature (MDT) and mean photosynthetic daily light integral (MDLI) on flowering during the finish stage of two petunia (Petunia × hybrida) cultivars were quantified. Petunia ‘Easy Wave Coral Reef’ and ‘Wave Purple’ were grown in glass-glazed greenhouses at 14–23 °C or 14–26 °C and under 4–19 mol m−2 d−1 with a 16-h photoperiod. The flower developmental rate was predicted using a model that included a linear MDT function with a base temperature multiplied by an exponential MDLI saturation function. The flower developmental rate increased and time to flower decreased as MDT increased within the temperature range studied. For example, under a MDLI of 12 mol m−2 d−1, as MDT increased from 14 to 23 °C, time to flower of ‘Easy Wave Coral Reef’ and ‘Wave Purple’ decreased from 51 to 22 d and 62 to 30 d, respectively. Flower developmental rate increased as MDLI increased until saturation at 14.1–14.4 mol m−2 d−1. Nonlinear models were generated for effects of MDT and MDLI on flower bud number and plant height at flowering. The number of flower buds at flowering increased as MDT decreased and MDLI increased. For example, at an MDT of 14 °C with 18 mol m−2 d−1, plants had 2.5–2.9 times more flower buds than those grown at 23 °C and 4 mol m−2 d−1. Models were validated with an independent data set, and the predicted time to flower, flower bud number, and plant height were within ±7 d, ±20 flowers, and ±4 cm, respectively, for 96–100%, 62–87%, and 93–100% of the observations, respectively. The models could be used during greenhouse crop production to improve scheduling and predict plant quality of these petunia cultivars.  相似文献   

17.
Effects of the commercial product TrichoFlow WP™ (Agrimm Technologies Ltd., New Zealand), based on the fungus Trichoderma harzianum, on quality characteristics and yield of bulb onion was investigated. Bulb sets of the local cultivar Kantartopu was planted in soil with in and between row distances of 0.15 m and 0.40 m, respectively. The product, at considerably high dosages of 5 g m−2, 10 g m−2 and 15 g m−2, was mixed with water and sprinkled once to the plots at planting. Analyses of data at harvest did not show statistical significance for Trichoderma effect on total bulb yield, bulb diameter, leaf length, number of shoot apex, %titratable acidity, number of internal (fleshy) leaves, number of external (papery) leaves, %soluble solids and %bulbs with diameters of 20–39 mm, 40–69 mm and ≥70 mm. The yields obtained from the plots treated with the dosages of 5 g m−2, 10 g m−2 and 15 g m−2 and the control plots were 1063.7 kg da−1, 1051.0 kg da−1, 1066.5 kg da−1 and 985.0 kg da−1, respectively. Our results showed that high dosages of the Trichoderma product were not effective in enhancing onion bulb and yield characteristics under the given conditions.  相似文献   

18.
Poultry manure (PM) must be disposed of from poultry farms, but is a potentially valuable source of macro- and micronutrients for plant growth. The objective of this study was to examine the effects of poultry manure on the growth of tomato (Lycopersicon esculentum) plants. Yields of fruits and vegetative material of plants grown in soil with 0, 10, 20 and 40 g kg−1 PM added were measured. Concentrations of N, P, K, Ca, Mg, S, Fe, Zn, Cu, Mn, Mo, Cl, Si, Br, Rb, Sr and Ba in leaves at flowering and at final harvest and in fruits were determined by polarized energy dispersive X-ray fluorescence (PEDXRF). Poultry manure fertilization improved tomato shoot growth and also fruit yield and increased leaf N concentrations at the harvest stage. In addition, P concentrations of the leaves and fruits were increased as the application rate of PM was increased. Fruit Ca and Mg were significantly reduced by increased rate of PM application, but not to the extent to cause the calcium deficiency disorder blossom end rot. Applied high levels of PM slightly increased the concentrations of leaf Mo and Br at the harvest stage. Poultry manure applications had a positive effect on the concentrations of leaf Zn, Cu, Cl and Rb at both sampling stages, but leaf Si concentration was reduced by PM treatments. The concentrations of Zn and Rb were increased in the fruits by PM treatments, but the concentrations of Br were decreased. Applied PM levels had no significant effects on the concentrations of K, S, Fe, Sr or Ba in tomato plants. It is concluded that the increased fruit yield, and the increased concentration of Zn (an element required in the human diet) and the lowered concentration of potentially harmful Br in the fruit make poultry manure a valuable growing medium for tomato production.  相似文献   

19.
Salicornia is a new vegetable crop that can be irrigated with highly saline water, even at salt concentrations equivalent to full-strength seawater. During leafy vegetable cultivation, the onset of the reproductive phase is an undesired phenomenon that reduces yield and quality and prevents year-round cultivation. Knowledge about the regulation of floral induction in the members of the tribe Salicornieae, however, is lacking. To establish year-round cultivation, we studied the flower induction of five Salicornia and two Sarcocornia varieties. Plants were grown under two day lengths, 13.5 h and 18 h, and harvested by a repetitive harvest regime. A 13.5-h day length prevented flower induction in the Israeli Salicornia varieties, but a longer day length was required to prevent flower induction in two species originating from more northern latitudes. The onset of the reproductive phase under suboptimal short day length conditions severely reduced vegetative growth and yields in Salicornia. In Sarcocornia, the repetitive harvest regime prevented flowering, making it a promising candidate for year-round cultivation. Irrigating the plants with full-strength seawater (electrical conductivity 48 dS m−1) vs. water with moderate salinity (electrical conductivity 10 dS m−1) did not change the general flowering pattern of the studied Salicornieae members.  相似文献   

20.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号