首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of five levels of nitrogen fertilization on the growth and nutritional quality of Cos lettuce (Lactuca sativa L. cv. Parris Island) at harvest and after storage was studied during autumn and winter in South-West Greece. Plants were cultivated hydroponically in a greenhouse and the nitrate, chlorophyll and ascorbic acid (vitamin C) concentrations within the plant tissues were measured at harvest and following storage at 5 or 10 °C for 10 days. Nitrate accumulated in the leaves with increasing amounts of N within the nutrient solution and was higher in the winter than in the autumn. At the lowest N level (20 mg L−1), the inner leaves accumulated more nitrate than the outer leaves, whereas at higher N levels (140, 200 or 260 mg L−1) nitrate accumulation was higher in the outer leaves. Overall, the highest nitrate concentrations were detected in the petiole and the proximal end of the leaf, but at the lowest N application rate (20 mg L−1) nitrate accumulated in the distal region of the leaf too. Although the nitrate concentrations within the leaves did not change significantly during 10 days storage at 5 or 10 °C, the chlorophyll and vitamin C concentrations decreased. Chlorophyll loss was higher in lettuce that was grown under low N levels and was higher at 10 °C than at 5 °C, but was reduced by enclosure of the lettuce in polyethylene film. It is concluded that the optimum N application rate for Cos lettuce grown hydroponically under cover during autumn and winter in South-West Greece, and in other areas with a similar climate, is 200 mg N L−1 because at this N rate yield is satisfactory and leaf nitrate concentrations are below the maximum acceptable level for human consumption. Nutritional value (vitamin C concentration) and market quality (chlorophyll content) are highest at harvest and decrease during storage, but quality in terms of nitrate concentration does not change.  相似文献   

2.
The effects of incorporating 5-aminolevulenic acid (ALA) into the priming solution on low-temperature germination and emergence percentage performance of red pepper (Capsicum annuum cv. Sena) seeds before and after seed storage were investigated. Seeds were primed in 3% KNO3 solution for 6 days at 25 °C in darkness containing 0 ppm, 1 ppm, 10 ppm, 25 ppm, 50 ppm or 100 ppm ALA. Following priming, seeds were either immediately subjected to germination and emergence tests at 15 °C or stored at 4 °C or 25 °C for 1 month after which they were subjected to germination and emergence tests at 15 °C. Priming pepper seeds in the presence of ALA improved final germination percentage (FGP) and germination rate (MGT) at 15 °C compared to non-primed seeds. The highest FGP was obtained from seeds primed in the presence of 25 ppm and higher ALA concentrations while the highest MGT was obtained from seeds primed in KNO3 supplemented with 10 ppm ALA. Emergence percentages were the highest for the seeds primed in the presence of 25 ppm ALA and 50 ppm ALA while non-primed seeds had the lowest emergence percentage. Highest emergence rates (MET) and heaviest seedlings were also obtained from seeds primed in KNO3 supplemented with 50 ppm ALA. Although all priming treatments improved germination and emergence performance of pepper seeds at 15 °C following 1 month of storage under two different temperatures, inclusion of 25 ppm and 50 ppm ALA into the priming solution resulted in higher germination and emergence percentages and faster germination and emergence compared to seeds primed in KNO3 only and non-primed seeds. These results indicate that priming seeds in 25 ppm and 50 ppm ALA incorporated into the KNO3 solution can be used as an effective method to improve low-temperature performance of red pepper seeds and that these seeds can be stored for 1 month at 4 °C or 25 °C and still exhibit improved germination and emergence performance at 15 °C.  相似文献   

3.
Asiatic hybrid lilies, Lilium × elegans Thunb., ‘Red Carpet’ and ‘Sunray’ were used to investigate the effect of bulb vernalization at 2.5 °C on plant growth, flowering, and CO2 production (respiration), and to use the CO2 production pattern to monitor the time of flower bud initiation and development. Lily shoot emergence and flowering were accelerated when bulbs received 2.5 °C bulb vernalization; however, flowering was delayed when bulbs were stored at 20 °C before treatment at 2.5 °C; this indicated that bulbs were de-vernalized. The maximum CO2 level, and the minimum level, reached in 78 h in non-vernalized bulbs and in 110 h in 6 weeks of 2.5 °C (6 weeks/2.5 °C) treated bulbs, was increased as the 2.5 °C duration was increased; this indicated that CO2 level can be an useful parameter to measure the cold stimulus (i) accumulated in bulbs following bulb vernalization. The respiration rate higher than the predicted values of the best-fit curves derived from the quadratic equations was designated as Blip A and this was correlated to the time of flower bud initiation and development. Shoot elongation may follow the rise in carbon dioxide levels after reaching the minimum level. It is proposed that increased carbon dioxide levels higher than the predicted levels (Blip A), was correlated to the time of flower bud initiation and development. Measurement of carbon dioxide production upon receipt of bulbs may be a useful technique to provide important information for optimum vernalization treatments for bulbs that have accumulated different levels of low temperature stimulus after bulb vernalization.  相似文献   

4.
This study was initiated to investigate the differences in germination percentages and rates between Corylopsis coreana Uyeki and Corylopsis sinensis var. calvescens Rehder & E.H. Wilson following a warm stratification (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different durations of CS. Warm stratification at 10 °C, 15 °C, 20 °C, and 25 °C was given for 1 month (1 M 10 °C, 15 °C, 20 °C, and 25 °C WS) followed by 0 M, 1 M, 2 M, and 3 M of CS at 5 °C (0 M, 1 M, 2 M, 3 M CS) and seeds were germinated in an air conditioned greenhouse maintained at 18.5 °C/18 °C. On average, less than 1% of C. coreana seeds germinated when sown without any WS and CS or with 1 M 15 °C, 20 °C, and 25 °C WS without CS treatment. However, 26% C. coreana seeds germinated after 1 M 10 °C WS without any CS treatment. Germination was not affected by WS temperatures when followed by 2 M 5 °C CS. It is concluded that C. coreana exhibited low seed germination at 10 °C and that this temperature could be considered the upper limit of CS for C. coreana. Only 2 M CS was required for more than 90% seeds to germinate. However, C. sinensis var. calvescens required longer than 3 M CS for more than 29% seeds to germinate. This clearly shows that there is an interspecific variation in optimum dormancy-breaking requirements.  相似文献   

5.
The main cherry cultivar grown in the warm climate of Israel, ‘Bing’, produces relatively small fruit. Over three consecutive years (2003–2005), application of 50 mg l−1 2,4-dichlorophenoxypropionic acid [2,4-DP; as its butoxyethyl ester (Power™)], 10 mg l−1 3,5,6-trichloro-2-pyridyloxyacetic acid [3,5,6-TPA; as the free acid (Maxim®)], or 25 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) plus 30 mg l−1 naphthaleneacetic acid (NAA; 0.3% Amigo™), at the beginning of pit-hardening when fruitlet diameter was ca. 13 mm caused appreciable and significant increases in fruit size and total yield, except when the crop load was heavy. Anatomical studies revealed that the main effect of these synthetic auxins was via direct stimulation of fruit cell enlargement. The above auxins had no negative effect on fruit quality, either at harvest or after 1 month of storage at 0 °C, or on return yield in the following year.  相似文献   

6.
This paper analyses the effect of different air temperatures (10, 20 and 30 °C) on the response of sweet pepper plants (Capsicum annuum L. cv. Herminio) to foliar urea applications after growing plants for 20 day with and without nitrogen (N) applied to the growing substrate. Leaf CO2 assimilation, chlorophyll fluorescence, root respiration, lipid peroxidation and antioxidative enzymes were analysed. Spraying plants with urea increased leaf CO2 assimilation of N-deficient plants when applied at 20 or 30 °C, compared with non-sprayed plants. When plants were sprayed with urea at 10 °C chlorophyll fluorescence of leaves was similar to that of plants that were supplied with full N in the nutrient solution. Root respiration was not affected by urea sprays whilst leaf NO3 concentration was increased by urea but only when it was sprayed at 10 or 20 °C. Lipid peroxidation and ascorbate peroxidase in N-deficient plants were reduced significantly by urea sprays, especially when plants were sprayed at 20 °C with N-limitation in the growing substrate. This study shows that N-limitation in the growing substrate induces a temperature-dependant increase in the activities of antioxidant enzymes in leaves of pepper and applications of foliar urea can be optimised, when applied at the appropriate temperature, to partly replace the N supplied to the roots of sweet pepper.  相似文献   

7.
In addition to managing soil-borne diseases in muskmelon (Cucumis melo L.) production, grafting with resistant rootstocks may impact fruit quality. The ethylene antagonist 1-methylcyclopropene (1-MCP) has been shown to extend shelf life of fresh muskmelon fruit. Postharvest characteristics of 1-MCP-treated melon fruit as affected by grafting, however, have not been well examined. This study was conducted to explore the influence of grafting with different rootstocks on ripening and quality attributes of 1-MCP-treated muskmelon fruit during postharvest storage. Grafted ‘Athena’ muskmelon with two commercial squash interspecific hybrid rootstocks including ‘Strong Tosa’ and ‘Tetsukabuto’ as well as non-grafted and self-grafted ‘Athena’ were grown in replicated field plots at the University of Florida Plant Science Research and Education Unit (Citra, FL, USA) during April–June 2010. Half-slip fruit from two harvests were treated with 1.0 μL L−1 1-MCP (18 h, 20 °C) and analyzed during storage at 13 °C. For fruit from the 27 May harvest, whole fruit and mesocarp firmness, titratable acidity, soluble solids, and ascorbic acid content were measured, while production of ethylene and CO2 was determined on fruit from the 29 June harvest. Grafting did not show a significant impact on fruit yield but affected the fruit shelf life significantly. Fruit from non-grafted ‘Athena’ and ‘Athena’ grafted onto ‘Strong Tosa’ demonstrated a shelf life of 31 d for the first harvest and 22 d for the second harvest. Shelf life of fruit from self-grafted ‘Athena’ and ‘Athena’ grafted onto ‘Tetsukabuto’ declined by 6 d and 3 d for the first and second harvest, respectively. Whole fruit firmness decreased by approximately 15.5% on average from 13 to 31 d except day 19 as a result of grafting, but to a lesser extent with ‘Strong Tosa’ rootstock. Mesocarp firmness of grafted melon was reduced by about 30.2% at days 13 and 19 compared to non-grafted ‘Athena’ fruit. In contrast, titratable acidity, soluble solid content, and ascorbic acid concentration were less affected by grafting. All the measurements except for ethylene and CO2 production declined during storage regardless of the grafting treatment. Compared with ‘Strong Tosa’ rootstock, ‘Tetsukabuto’ resulted in a more rapid ripening under 1-MCP application, as reflected by earlier increase in ethylene production and higher respiratory rate. The study demonstrates that grafting effects on postharvest ripening and quality of ‘Athena’ muskmelon can vary markedly with rootstocks used.  相似文献   

8.
Pre-dehiscent capsules were collected from two Rhododendron griersonianum (Balf.f. & Forrest) trees and either immediately dried in a dry-room (15% relative humidity, 15 °C) or placed in a high humidity room (80% relative humidity, 15 °C) for 30, 60, or 90 d. Further capsules were also collected from the trees at 30 and 60 d, but seeds had been dispersed by 90 d. Seed ageing experiments (60% relative humidity, 45 °C) carried out on these seed-lots and on seeds from a further 10 Rhododendron (L.) species confirmed that short seed lifespans is a trait of the genus, with a mean P50 value of ca. 20 d for this storage environment.  相似文献   

9.
Linaria maroccana Hook. f. Ann., ‘Lace Violet’, Lupinus hartwegii ssp. cruikshankii Lindl. ‘Sunrise’ and Papaver nudicaule L. ‘Meadow Pastels’ seeds were directly sown into 105 cell plug trays and received either ambient light or supplemental high intensity discharge (HID) lighting. For each species, a 2 × 3 × 3 factorial was used with two light intensities during propagation, three transplant stages, and three night temperatures. Seedlings were transplanted at the appearance of 2–3, 5–6, or 8–9 true leaves. Transplanted Linaria and Papaver seedlings were placed at 5/11, 10/16, or 15/21 ± 1 °C night/day temperatures and Lupinus seedlings were placed at 15/24, 18/25, or 20/26 ± 2 °C night/day temperatures. For this study, the optimum production temperature for Linaria was 10/16 °C as the cut stems produced at 15/21 °C were unmarketable and production time was excessively long at 5/11 °C. At 10/16 °C, Linaria seedlings should be transplanted at the 2–3 leaf stage to maximize stem number, stem length and profitability. For Lupinus the optimum temperature was 15/24 °C due to long stems and high profitability per plant. Lupinus seedlings should be transplanted at the 2–3 leaf stage when grown at 15/24 °C to obtain the longest and thickest stems; however, $/m2 week was higher for plants transplanted at the 8–9 leaf stage due to less time in finishing production space. For Papaver, the 15/21 °C temperature was optimal as that temperature produced the longest stems in the shortest duration, resulting in the highest $/m2 week. At 15/21 °C Papaver plants should be transplanted at the 2–3 leaf stage. Supplemental HID lighting had no effect on any of the species.  相似文献   

10.
Eggplant cv. Emi and Tsakoniki were cultivated for seed in an unheated greenhouse and fruits were harvested at 25–65 days after anthesis (DAA) in order to determine the optimum harvest time. In addition, the effect of after-ripening on seed quality (i.e. seed size and germination) was examined by storing harvested fruit at 25 °C for 20 days prior to seed extraction. From the results, it was concluded that the optimum time of harvest for seed production is 55 DAA. Seeds extracted from fruits that were harvested at 25–35 DAA did not germinate, but when fruits harvested at the same age were stored for 20 days at 25 °C prior to seed extraction (i.e. seeds were after-ripened) germination was induced. Seeds extracted from fruits harvested at 45 DAA showed a high percent germination, which decreased after storage at 25 °C for 3 months. This decrease, however, was reduced by after-ripening prior to extraction. It is concluded that although eggplant is a non-climacteric species and fruit do not ripen after harvest, nevertheless seeds within the fruit continue to fill and mature after harvest; hence storage of prematurely harvested fruit prior to seed extraction permits the seeds of these fruits to after-ripen in situ and thereby increases seed size and germination. The implication of this result for eggplant seed production is discussed.  相似文献   

11.
The influence of bulb maturity at bulb harvest on growth and flowering response of Ornithogalum thyrsoides Jacq. ‘Chesapeake Starlight’ was investigated. Experiments were designed to determine if bulb maturity can be induced by bulb storage temperatures and whether bulb maturity can be evaluated by flowering responses. Bulbs with all senesced leaves at harvest were considered “mature” or with emerging young leaves and re-growing young roots were considered “immature”. Bulbs were potted after 0, 3, and 6 weeks of 30 °C or 2 weeks of 10 °C given either in the middle or at the end of 6 weeks of 30 °C. Mature bulbs, as compared to immature bulbs, took longer for leaves to emerge when control bulbs that did not receive any temperature treatment after harvest were planted upon harvest. Leaf emergence of the immature bulbs was significantly earlier than that of the mature bulbs. Mature bulbs which received 30 °C for 3 weeks (30 °C/3 week) flowered 31 days faster than immature bulbs and all bulbs flowered. Leaf emergence and flowering of mature and immature bulbs that received 30 °C/6 weeks or 2 weeks of 10 °C in the middle of 6 weeks of 30 °C (30 °C/2 weeks–10 °C/2 week–30 °C/3 weeks) did not differ from each other. Maturity can be induced by storing immature bulbs at 30 °C/6 weeks. Maturity, as evaluated by flowering percentage and days from leaf emergence to flowering, can be induced in O. thyrsoides. Immature bulbs can, therefore, be harvested for later forcing as long as bulbs are treated with 30 °C/6 weeks. It is proposed that maturity can be correlated with the speed of flowering and bulbs can be harvested at immature physiological state for forcing. Postharvest high-temperature treatment can be used to force immature bulbs that were harvested before the senescence of the leaves.  相似文献   

12.
Unreduced gamete formation is significant in the evolutionary development of complex polyploidy series found in wild strawberry, genus Fragaria (Rosaceae). Also, it is important for genetics and breeding in strawberry plants to elucidate the mechanism of unreduced gamete formation. The objective of this study was to search for ploidy anomalies resulting from artificial diploid × octoploid crosses, and examine the mechanism through which these unreduced gametes were produced. Five everbearing cultivars of Fragaria vesca L. diploid (2n = 2x = 14) were crossed with pollen from six June-bearing cultivars of Fragaria × ananassa Duch., octoploid (2n = 8x = 56). A total of 3000 mature seeds, 100 from each of the 30 parental combinations were sown at 23 °C/20 °C (day/night) under artificial lighting with a 16 h day. The seedlings were transplanted to pots and grown in a greenhouse. Reproductive and morphological observations, flow cytometry analyses, chromosome counts and DNA analyses using CAPS markers were performed to identify the genetic background of the offspring. Most of the seed (79%) did not germinate or died soon after germination. Of the seedlings produced, 7% seemed to be pure F. vesca based on morphological characteristics, flow cytometry analyses and chromosome counts; 14% were pentaploids (2n = 5x = 35), 0.1% were hexaploids (2n = 6x = 42), and 0.03% (one individual) was aneuploid (2n = 8x + 2 = 58). Electrophoresis banding patterns obtained by CAPS marker analysis were heterozygotic in the 8x pollen parent but homozygotic in the aneuploid progeny. Judging from the chromosome counts and the CAPS marker analysis, the aneuploid was the result of a homozygous unreduced pollen grain (8x) crossed with an incomplete chromosome compliment from the egg. Because of the homozygosity, the unreduced male gamete must have been derived from second division restitution (SDR) in the octoploid pollen parent.  相似文献   

13.
Rootstocks differentially influence tree physiology and these differences may be due to varying responses to root zone temperature (RZT). To determine if this is the case, the physiology, leaf development and nitrogen relationships of five different Prunus rootstocks with chill requirements between 100 and 1100 h were examined during and after growth at RZTs of 5, 12 and 19 °C for 6 weeks. RZT correlated positively with leaf numbers, expansion rates and final leaf area, and significant differences existed among the rootstocks in the magnitude of these parameters at different RZTs. In particular, leaf expansion and area were less affected at low RZT in the low chill varieties. Net assimilation (An), leaf nitrogen (N%) and photosynthetic nitrogen use efficiency (An/N) also correlated positively with RZT: again, there were differences in the magnitude of these parameters among the rootstocks. No associations amongst An, N% or An/N could be found for the rootstocks; hence, they all differed in their physiological responses to RZT. Low RZT alone was sufficient to reduce An and decreased both leaf area and photosynthetic activity. Leaf expansion was related to N%, as the varieties with the lowest N% also had the lowest expansion rates. Infrared thermography of the cv. Golden Queen showed a negative correlation between RZT and leaf temperature with leaves of plants at the lowest RZT being 2 °C warmer than ambient whilst those at the highest RZT were 2 °C cooler than ambient. These differences were due to transpiration, as transpiration for the variety used decreased with reducing RZT. Transpiration from the other rootstock varieties was lowest at the 5 °C RZT but, depending on variety, at 12 °C was either higher, lower or the same as that from plants whose roots were at 19 °C. Together, the results of this study explain some of the rootstock-induced changes in tree growth and suggest the need to incorporate seasonal changes in RZT into development models for peaches.  相似文献   

14.
The effects of temperature and ethylene on the quality of snapdragon flowers (Antirrhinum majus L. cvs. ‘Potomac Pink’ and ‘Rocket’) after harvest were investigated. The flowers were stored dry or wet at 6 temperatures ranging from 0 to 12.5 °C for 5 days. Vase life and gravitropic bending were measured at 20 °C after storage. Respiration rates of flowers at 8 different temperatures (0, 2.5, 5, 7.5, 10, 12.5, 15 and 20 °C) were measured continually using a computerized system. The respiration of cut snapdragon flowers increased exponentially as the temperature increased from 0 to 20 °C, with a mean Q10 of 2.6. The vase life of flowers of the ‘Potomac Pink’ cultivar stored dry at 0 °C was 10.8 days, similar to that of freshly harvested controls (10.6 days), and 4.4 days longer than that of flowers stored at 7.5 °C. When spikes were placed horizontally at 20 °C, growth became negatively gravitropic within 20 min. Bending was significantly higher than controls (stored vertically) in all flowers stored horizontally at temperatures above 5 °C. Vase life of flowers stored for 5 days at a range of temperatures then placed in an interior environment was directly correlated with respiration rate at the storage temperature. Wet storage of cut snapdragon flowers reduced the loss of quality at storage temperatures above 5 °C but the vase life of flowers stored in water at 12.5 °C was less than half that of flowers stored dry at 0 °C. Ethylene treatment caused 100% floret abscission which was prevented by pre-treatment either with 1-methycyclopropene (1-MCP) or with silver thiosulfate (STS), but neither of these inhibitors prevented gravitropic bending.  相似文献   

15.
Low seed germination is a major problem in commercial rose propagation and breeding and is species-dependent. The present work selected four rose species previously un-examined to explore effective methods for improving seed germination and the relevant dormancy mechanism and its levels in seven experiments. The results showed that both pulp and achenes from the four rose shrubs had chemical substances that significantly inhibited seed germination with the inhibitory effect was more pronounced in pulp extract than of achenes. Single treatments of H2SO4 scarification, short-term cold stratification (<16 weeks) or warm stratification were less effective in breaking dormancy as indicated by lower germination index than their combinations. Comprehensive comparisons showed that among the six treatments the most effective for breaking dormancy was H2SO4 scarification followed by warm plus cold stratification, then H2SO4 scarification followed by cold stratification and finally warm plus cold stratification. Scarification with H2SO4 for 2–4 h ordinal followed by warm stratification at 20 °C for 4 weeks and cold stratification at 5 °C for 8 weeks was the best pretreatment for increasing seed germination percentage for Rosa multibracteata (81.4 ± 2.9%), Rosa hugonis (13.1 ± 6.0%), and Rosa filipes (62.7 ± 5.7%); and H2SO4 scarification for 4 h followed by cold stratification at 5 °C for 12 weeks was the best pretreatment for Rosa sericea (46.7 ± 8.7%). Our results suggest that these four species have only physiological dormancy caused by integrative roles of pulp, pericarp and embryo. The level of physiological dormancy was ranked as R. hugonis > R. sericea > R. filipes > R. multibracteata.  相似文献   

16.
High temperatures are known to reduce fruit size and fruit weight in strawberry, but cultivar differences in the response to high temperature stress during the reproductive stage up to the second inflorescence have not been sufficiently reported. We examined the effect of two day/night temperature regimes on fruit set and fruit growth in two cultivars, ‘Nyoho’ and ‘Toyonoka’. A high day/night temperature of 30/25 °C reduced the number of inflorescences, flowers, and fruits in both cultivars compared with plants grown at 23/18 °C. The percentage of fruit set in ‘Nyoho’ was not significantly different between the two temperature treatments, while that in ‘Toyonoka’ was much lower at 30/25 °C than at 23/18 °C. Days to ripening was shorter at 30/25 °C than at 23/18 °C, and no cultivar differences were observed. Fresh weight of primary, secondary, and tertiary fruits was greater at 23/18 °C than at 30/25 °C in both cultivars, and no cultivar differences were observed, except in tertiary fruits. The diameter of fruits from all positions was also reduced at 30/25 °C in both cultivars. Relative growth rates of fruits showed two peaks in both cultivars and in both temperature treatments. Both peaks appeared earlier at 30/25 °C than at 23/18 °C. Percentage of fruit set at 30/25 °C in the second inflorescence was also significantly lower in ‘Toyonoka’ than in ‘Nyoho’. These results indicate that high temperature stress negatively affects the reproductive process in strawberry and that plant response to high temperature stress is cultivar-related in such responses.  相似文献   

17.
Successful fruit set depends on several reproductive processes including pollen germination and tube growth processes. An experiment was conducted to determine the effects of temperature on pollen germination characteristics and to identify species/genotypic differences in Capsicum using the cumulative temperature response index (CTRI) concept. Pollen was collected from plants of seven genotypes from five Capsicum species, adapted to various parts of the world and grown outdoors in large pots. The pollen was subjected to in vitro temperatures ranging from 15 to 50 °C at 5 °C intervals. Pollen germination and tube lengths were recorded for all species after 24 h of incubation at the respective treatments. Species/genotypes differed significantly for in vitro pollen germination percentage and pollen tube length with mean values of 78% and 734 μm, respectively. The mean cardinal temperatures (Tmin, Topt, and Tmax) averaged over genotypes, were 15.2, 30.7, and 41.8 °C for pollen germination and 12.2, 31.2, and 40.4 °C for pollen tube growth. The CTRI of each species/genotype calculated as the sum of eight relative individual stress response values, such as maximum pollen germination, maximum pollen tube length; Tmin, Topt, and Tmax temperatures of pollen germination, and pollen tube lengths, identified species tolerance to high temperatures. Capsicum annum cv. Mex Serrano from Mexico was identified as tolerant, C. chacoense cv. 1312 and C. spp. cv. Cobanero from Argentina and Guatemala, respectively as intermediate and C. frutescens cv. Early Spring Giant from China, C. annum cv. Long Green from South Korea, C. spp. cv. NM89C130 and C. pubescens cv. 90002 from Guatemala as sensitive to high temperatures. The tolerant species/genotypes can be used in breeding programs to develop new genotypes that can withstand high temperature conditions both in the present climate and particularly in a future warmer climate.  相似文献   

18.
The effects of hot water treatment on antioxidants and fruit quality were investigated in banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) by immersing fruits in hot water (50 °C) for 10 min, before storage at 25 °C for 10 days or 14 °C for the first 8 days followed by storage at 25 °C for the second 8 days until ripening. Quality parameters including peel color and pulp firmness indicated that hot water treatment helped to delay banana fruit ripening at both storage conditions. Hot water treatment decreased the levels of hydrogen peroxide (H2O2) and malonydialdehyde (MDA) during storage at 25 °C. Glutathione (GSH and GSSG) contents and the ratio of GSH/GSSG during fruit approaching ripening were significantly induced in hot water-treated fruits while ascorbic acid (AA) contents were slightly increased. In addition, the combined treatment increased free phenolics and flavonoids during storage. Results suggest that hot water treatment has led to an induction of antioxidants in banana fruits as indicated by an increase of antioxidants and a decrease of H2O2 during ripening, and all of which result in a delayed ripening of banana fruit.  相似文献   

19.
Using Agrobacterium mediated transient expression method, plant bivalent expression vector pBI121 containing GUS as a report gene was transformed into lettuce (Lactuca sativa). Through designed orthogonal analysis, intact lettuce leaves infiltrated with 200 μM acetosyringone and 0.8 OD600 bacterial suspensions under vacuum for 30 min, then co-cultured at 24 °C for 6 ds produced a maximum GUS protein of 2.5% TSP with 21.39 nmol mg−1 min−1 MU activity, which was 19 times of the control (1.31 nmol mg−1 min−1 MU). Employed these optimized conditions HuIFN-beta was expressed in lettuce leaves. Western blot and antivirus bioactivity analyses confirmed the HuIFN-beta achieved by agrobacterium infiltration had a high biological activity (3.1 × 104 IU/mL). To our knowledge, it is the first detailed orthogonal optimizing study of Agrobacterium mediated transient expression and the first report on the production of the biologically active therapeutic proteins produced by Agrobacterium mediated transient expression in lettuce. In summary, transient expression by Agrobacterium vacuum infiltration can be adopted as an efficient, inexpensive and small-scaled plant expression system for therapeutic protein production.  相似文献   

20.
Oil rose flowers were stored at 0 °C in four different packaging materials [plastic box + stretch film (PB + SF), Xtend®, Smartbag® and polyethylene (PE)] for 60 days. During storage, weight loss, O2 and CO2 concentrations in the packages, petal color and sensorial attributes were investigated besides essential oil content and composition. Storage duration and packages had significant (p < 0.01) effects on weight loss. At the end of storage, the lowest weight loss was in PE package (1.696%) whereas the highest weight loss was in Xtend® (10.081%). The essential oil content was significantly (p < 0.01) affected by storage duration and packages. In addition, the essential oil contents obtained from all packages for a storage period of 10 days and the essential oil contents obtained from unstored (control) petals were included in the same group. At the end of storage, the essential oil contents decreased by 91.3, 57.7, 80.0 and 64.3% in PB + SF, Xtend®, Smartbag® and PE packages, respectively as compared to control. In addition, storage duration and package types significantly (p < 0.01) affected petal color, O2 and CO2 concentrations in the packages and sensorial scores. The concentration of citronellol, a main component of rose oil, increased in all packages during storage of 10 days in comparison to the control group while it varied in other storage durations and package types. However, nerol and geraniol were lower than the control group during storage while concentrations of nonadecane, heneicosane and eicosane were higher. In conclusion, loss of oil yield and quality, due to various reasons and particularly due to fermentation in oil rose from the harvest of petals to their distillation, can be minimized with storage of petals in all package types for up to 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号