首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The efficiency of different temperature cycles in inducing budburst of one-year-old shoots of the apricot cultivar ‘Palsteyn’ from dormancy was evaluated. Three replications of shoots were collected during two consecutive years from adult trees, following the accumulation of different amounts of chilling in the field. Thereafter, shoots were exposed to different temperature cycles in growth chambers, for 60 days. The temperature treatments included a continuous temperature of 5 °C; daily temperature cycles of 19/5 h at 5/15 °C, at 5/20 °C, and at 5/25 °C; and the same temperature cycles for the remainder of the 60-day period, after pretreatment at 5 °C for 30 or 45 days. After the temperature treatments, shoots were forced at 25 °C until budburst. The mean time to budburst (MTB) (in days) of lateral vegetative, terminal vegetative and reproductive buds was evaluated. The efficiency of the different treatments was greatly influenced by the date on which shoots were cut. High temperatures had a more positive effect on the reduction of MTB when chilling accumulation had occurred in the field instead of the growth chamber. After partial chilling accumulation in the field, high temperatures (25 °C) combined with low temperatures are more efficient than cycles of moderate temperatures (15 or 20 °C) to induce an earlier budburst. In view of these results, a parallel accumulation of both chilling and heat requirements after partial chilling accumulation is suggested. The application of these results could assist in the development of more accurate models for the prediction of the overcoming of dormancy and blooming.  相似文献   

2.
The influence of bulb maturity at bulb harvest on growth and flowering response of Ornithogalum thyrsoides Jacq. ‘Chesapeake Starlight’ was investigated. Experiments were designed to determine if bulb maturity can be induced by bulb storage temperatures and whether bulb maturity can be evaluated by flowering responses. Bulbs with all senesced leaves at harvest were considered “mature” or with emerging young leaves and re-growing young roots were considered “immature”. Bulbs were potted after 0, 3, and 6 weeks of 30 °C or 2 weeks of 10 °C given either in the middle or at the end of 6 weeks of 30 °C. Mature bulbs, as compared to immature bulbs, took longer for leaves to emerge when control bulbs that did not receive any temperature treatment after harvest were planted upon harvest. Leaf emergence of the immature bulbs was significantly earlier than that of the mature bulbs. Mature bulbs which received 30 °C for 3 weeks (30 °C/3 week) flowered 31 days faster than immature bulbs and all bulbs flowered. Leaf emergence and flowering of mature and immature bulbs that received 30 °C/6 weeks or 2 weeks of 10 °C in the middle of 6 weeks of 30 °C (30 °C/2 weeks–10 °C/2 week–30 °C/3 weeks) did not differ from each other. Maturity can be induced by storing immature bulbs at 30 °C/6 weeks. Maturity, as evaluated by flowering percentage and days from leaf emergence to flowering, can be induced in O. thyrsoides. Immature bulbs can, therefore, be harvested for later forcing as long as bulbs are treated with 30 °C/6 weeks. It is proposed that maturity can be correlated with the speed of flowering and bulbs can be harvested at immature physiological state for forcing. Postharvest high-temperature treatment can be used to force immature bulbs that were harvested before the senescence of the leaves.  相似文献   

3.
The influence of seed maturity, seed storage and germination pre-treatments on seed germination of cleome (Cleome gynandra L.) were investigated. Seed maturation studies showed that capsules harvested at 18 days after anthesis possessed the highest dry weight with 19.2% moisture and 1% germination. Development of fresh-ungerminated seed was observed with increasing maturity of fruit, suggesting that cleome exhibited forms of seed dormancy. Storing mature seed at 15 °C and at room temperature for 5 months showed that seed dormancy was broken after 3 months under both storage regimes. When mature seeds were subjected to different treatments including various levels of GA3, KNO3, leaching, pre-chilling, soaking and pre-heating at different temperatures, it was found that pre-heating at 40 °C for period of 1–5 days was the most effective method in breaking dormancy in cleome.  相似文献   

4.
The effects of temperature and ethylene on the quality of snapdragon flowers (Antirrhinum majus L. cvs. ‘Potomac Pink’ and ‘Rocket’) after harvest were investigated. The flowers were stored dry or wet at 6 temperatures ranging from 0 to 12.5 °C for 5 days. Vase life and gravitropic bending were measured at 20 °C after storage. Respiration rates of flowers at 8 different temperatures (0, 2.5, 5, 7.5, 10, 12.5, 15 and 20 °C) were measured continually using a computerized system. The respiration of cut snapdragon flowers increased exponentially as the temperature increased from 0 to 20 °C, with a mean Q10 of 2.6. The vase life of flowers of the ‘Potomac Pink’ cultivar stored dry at 0 °C was 10.8 days, similar to that of freshly harvested controls (10.6 days), and 4.4 days longer than that of flowers stored at 7.5 °C. When spikes were placed horizontally at 20 °C, growth became negatively gravitropic within 20 min. Bending was significantly higher than controls (stored vertically) in all flowers stored horizontally at temperatures above 5 °C. Vase life of flowers stored for 5 days at a range of temperatures then placed in an interior environment was directly correlated with respiration rate at the storage temperature. Wet storage of cut snapdragon flowers reduced the loss of quality at storage temperatures above 5 °C but the vase life of flowers stored in water at 12.5 °C was less than half that of flowers stored dry at 0 °C. Ethylene treatment caused 100% floret abscission which was prevented by pre-treatment either with 1-methycyclopropene (1-MCP) or with silver thiosulfate (STS), but neither of these inhibitors prevented gravitropic bending.  相似文献   

5.
The state of Morelos, Mexico has gradually become an important producer of gladiolus. Some preconditioning treatments of corms are empirically done causing uneven emergence and low quality of flowers. In this investigation, before planting, gladiolus corms var. ‘Blanca Borrego’ were dipped in chitosan (chitosan reagent and commercial chitosan Biorend®), in hot water at various temperatures and in treatments combined with Biorend® at 1.5% and hot water. Results indicated that the most influenced variables were corm germination, number of flowers per spike, number of cormlets and vase life. Overall, the commercial product Biorend® at 1.5% accelerated corm emergence in approximately 4 days, the number of flowers increased by 2–7 and the vase life extended for 3 days. The number of cormlets was also duplicated. Corms dipped in the commercial chitosan Biorend® at 1.5% at different intervals of time were not greatly affected except for the emergence and number of cormlets. However, for this experiment there were significant effects on the number of leaves and flowers because of the interactions between chitosan and the immersion time. The temperature of 55 °C affected plant development because emergence was delayed by 6 days; and there were less number of leaves, flowers and cormlets. On the other hand, the incidence of Fusarium oxysporum in naturally infected corms was 0% at temperatures of 55 °C and 50 °C. Immersion times (0, 10, 15 and 20 min) in hot water at 50 °C did not show significant effects on plant development and vase life. Corms dipped in Biorend® at 1.5% and hot water at 50 °C accelerated their emergence for about 1–7 days, the number of flowers increased by two, extended the storage life for 1–3 days and increased the number of cormlets. The integration of these two treatments -Biorend® and hot water- might be a good option for increasing the gladiolus plant quality and vase life.  相似文献   

6.
Scales excised from in vitro cultured bulblets of Lilium rubellum were cultured on MS medium supplemented with 0.044 or 4.4 μM BA in the dark for 300 days, the culture period of which was divided into three stages, with temperatures in each stage as follows: 25 °C in stage 1 (days 0–60); 25 °C or 8 °C in stage 2 (days 61–210); 20 °C in stage 3 (days 211–300). Numbers of bulblets per scale and bulblets with elongated stem (the transition from juvenile to vegetative adult phase) depended on the culture condition. The highest number of bulblets and the percentage of bulblets with elongated stems were obtained in scales cultured in medium with 4.4 μM BA at 25 °C in stage 2. On the other hand, BA concentration (0.044 and 4.4 μM) and/or temperatures (25 and 8 °C) in stage 2 influenced flowering in the bulblets with elongated stems (the transition from vegetative adult to flowering phase). Flowering occurred in bulblets with elongated stems when bulblets on scale were cultured in medium with 4.4 μM BA at 8 °C in stage 2, whereas no flowering occurred in bulblets cultured in any other culture conditions. In conclusion, the concentration of BA affects the transition from juvenile to vegetative adult phase, and the exposure of in vitro developed bulblets to low temperature is indispensable to initiate the flowering process.  相似文献   

7.
Embryo development followed by seed germination was investigated in seeds of Christmas rose (Helleborus niger) held under different temperature conditions. The seeds had a heart-shaped embryo when dispersed from parent plants. That embryo developed rapidly to the torpedo stage at 25 °C, after which no further development occurred. When seeds with a torpedo-stage embryo were held at 15 °C, the embryos developed to the cotyledon stage, but no further germination occurred. Similar phenomena in the course of embryo development were observed in seeds held in a non-heated polyethylene house, in which the embryos developed to the torpedo stage at 20 °C or more, while further development to the cotyledon stage was attained only at temperatures of 15 °C or less. Seeds with a cotyledon-stage embryo rarely germinated until they were treated at 4 °C for more than 8 weeks. These results suggest that seeds of H. niger have a deep, simple morphophysiological dormancy caused by the combination of rudimentary embryos and a physiological dormancy that can be broken by cycles of warming and chilling.  相似文献   

8.
This study was initiated to investigate the differences in germination percentages and rates between Corylopsis coreana Uyeki and Corylopsis sinensis var. calvescens Rehder & E.H. Wilson following a warm stratification (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different durations of CS. Warm stratification at 10 °C, 15 °C, 20 °C, and 25 °C was given for 1 month (1 M 10 °C, 15 °C, 20 °C, and 25 °C WS) followed by 0 M, 1 M, 2 M, and 3 M of CS at 5 °C (0 M, 1 M, 2 M, 3 M CS) and seeds were germinated in an air conditioned greenhouse maintained at 18.5 °C/18 °C. On average, less than 1% of C. coreana seeds germinated when sown without any WS and CS or with 1 M 15 °C, 20 °C, and 25 °C WS without CS treatment. However, 26% C. coreana seeds germinated after 1 M 10 °C WS without any CS treatment. Germination was not affected by WS temperatures when followed by 2 M 5 °C CS. It is concluded that C. coreana exhibited low seed germination at 10 °C and that this temperature could be considered the upper limit of CS for C. coreana. Only 2 M CS was required for more than 90% seeds to germinate. However, C. sinensis var. calvescens required longer than 3 M CS for more than 29% seeds to germinate. This clearly shows that there is an interspecific variation in optimum dormancy-breaking requirements.  相似文献   

9.
Seeds of wild asparagus (Asparagus acutifolius L.) were treated and compared in this research to investigate seed dormancy class and level involved in this species. Four seed lots were compared: (i) freshly harvested seeds in 2007 (07Fr); (ii) freshly harvested seeds in 2008 (08Fr); (iii) after-ripened (AR) 2007 seeds dry stored in glass jars (ARg); (iv) AR 2007 seeds dry stored in paper bags (ARp). The 07Fr seeds were exposed to (1) chemical scarification combined with gibberellic acid (GA3) levels (0, 200, 400, and 600 mg L−1) and to (2) 28-day moist stratification at 5 and 23 °C, and two sequences of 5/23 °C combined with 0 and 400 GA3 mg L−1 levels, and (3) together to the 08Fr and AR seeds were exposed to 56-day moist stratification at 5, 23, or 5/23 °C. With the 08Fr and AR seed lots this last stratification treatment was combined with 0 or 800 GA3 mg L−1 levels. The dormancy depth of 08Fr (32% germination) was less than 07Fr seeds (2%). The latter after-ripened during dry storage and when stored in glass germinated more (47.5%) than in paper (12%). Stratification for 4 weeks was ineffective in improving germination of 07Fr seeds; when chemically scarified they did not germinate at all. The highest (nearly 70%) and the most rapid and uniform germination were observed for all the lots when they were warm stratified for 56 days. Warm stratification improved germination more than alternate temperature stratification, while cold stratification inhibited germination especially for the 08Fr and ARg lots, thus seeds seem not to have a morphological component to their dormancy. GA3 only improved germination of 07Fr seeds, at a low rate. A. acutifolius seeds fit the characteristics of a non-deep physiological dormancy.  相似文献   

10.
Michelia yunnanensis Franch. is a Chinese endemic ornamental shrub with potential for greater utilization as a landscape and medicinal plant if propagation was less difficult. Seed development and breaking of seed dormancy were investigated to improve propagation of M. yunnanensis. No fresh seeds germinated when tested at the time of dispersal. Newly matured seeds of M. yunnanensis contained differentiated linear underdeveloped embryos that were physiologically dormant. The embryo/seed length ratio of M. yunnanensis was 0.15. Warm stratification did not break seed dormancy. Dormancy was broken by cold stratification at 4 °C but not by flowing water or nitrate. Embryos developed grew inside seeds during cold stratification at 4 °C. In newly harvested dormant seeds, embryos were 0.94 mm long and increased in length 139% before radicle emergence (germination). GA3 substituted for cold stratification to break dormancy in seeds of M. yunnanensis incubated at 25 °C or 20/25 °C. Mature M. yunnanensis seeds exhibited intermediate complex morphophysiological dormancy. Optimal germination of non-dormant seed in terms of both germination percentage and rate occurred at 20/25 °C.  相似文献   

11.
Wild asparagus (Asparagus acutifolius L.) is a widespread species found in all the Mediterranean areas. The spears are highly valued by consumers and owing to its frugality, this species is a feasible new crop with high income potential, especially for Mediterranean marginal areas. Currently, the cultivation of this species is limited because of its low and erratic seed germination that makes difficult the production of seedlings for plant propagation. In this research, non-after-ripened (1 month-old) and after-ripened seeds (dry stored at room temperature for 13 months) were exposed for 30 days in the dark to three moist stratification treatments: cold (5 °C), warm (23 °C) or no stratification; subsequently they were soaked for 12 h in warm water (35 °C) or not soaked. The effect of these pre-germination treatments on three germination parameters (germination percentage, time to 50% of final germination – T50 – and germination pattern) was studied, as well as some possible seed dormancy forms involved therein. The 1-year dry storage period proved to be effective in after-ripened seeds by enhancing seed sensitivity to the subsequent pre-germination treatments. After-ripened seeds exhibited higher and more rapid germination compared to non-after-ripened seeds. Soaking, cold or warm moist stratification had similar single effect on non-after-ripened seeds (27% germination). With after-ripened seeds, only soaking or warm stratification were effective (47% germination) when singularly applied, while cold stratification did not improve germination. By combining stratification and soaking treatments, a higher germination for both non-after-ripened and after-ripened seed-lots was achieved. The highest germination was obtained when after-ripened seeds were stratified and soaked (76%), without any significant difference between cold or warm stratification. Single or combined application of moist stratification (regardless of the temperature used) and soaking resulted always in a faster germination compared to that of no-treated seeds and especially with after-ripened seeds (T50 = 6 days). A non-deep type 1 physiological dormancy can be hypothesized for the seeds of this species. Low stratification temperature induce secondary dormancy in after-ripened seeds that can be removed by soaking them at 35 °C for 12 h.  相似文献   

12.
Growth and dormancy induction of seedlings or micropropagated plants of three Prunus species were studied under controlled environment conditions. All the species tested, P. cerasus L. and P. insititia L. (two cultivars each), and P. avium L. were insensitive to photoperiod at high temperature and maintained continuous growth in both 10 and 24-h photoperiods at 21 °C. At lower temperatures, however, growth was controlled by the interaction of photoperiod and temperature, the species and cultivars varying somewhat in their responses. At 9 °C growth cessation was induced regardless of day-length conditions in the plum rootstocks ‘St. Julien A’ and ‘Weito’ as well as in the sour cherry rootstock ‘Weiroot’, whereas in the sour cherry rootstock ‘Gisela 5’ growth cessation took place in short day (SD) only. At intermediate temperatures (12 and 15 °C) growth cessation occurred in SD only in both sour cherry cultivars. In P. avium seedlings on the other hand, growth cessation in SD was only induced at 9 °C, continuous but reduced growth taking place also in SD at all higher temperatures. Growth rates increased progressively with increasing temperature under long day (LD) conditions in all species, and this was associated with increased internode length in LD compared with SD conditions. Production of new leaves was unaffected by photoperiod at high temperature, but was higher in LD than in SD at lower temperatures. After growth cessation at low temperature the plants developed winter buds and became dormant also in LD conditions. These results demonstrate that, like several species of the Pomoidae subfamily of the Rosaceae, these Prunus species are insensitive to short photoperiods at relatively high temperatures. However, the photoperiodic response of the Prunus species is highly temperature dependent, and the transition temperatures for shifts in the photoperiodic response mode vary among the species.  相似文献   

13.
Prevailing ambient temperature during the reproductive phase is one of important factors for seed and fruit set in different plant species. In mango (Mangifera indica L.), natural low temperatures during flowering induced seedless fruits. Here the sexual reproduction process of ‘Tainong 1’ mango at low temperatures (diurnal maximum temperature < 20 °C) was studied. For comparison, we also examined this process at “normal” temperatures (diurnal maximum ranging from 25 to 30 °C, diurnal average temperature > 20 °C). Results showed: natural low temperatures significantly affected pistil and male gametophyte development, resulting in pollen grains with low viability. Meiotic chromosomal irregularities, including univalents, multivalents, laggards, bridges and micronuclei were detected at higher incidences and significantly greater proportions of nucleolus fragmentation and dissolution were detected when temperatures were low. Pollen tube growth was retarded under low temperature stress, either in vivo or in vitro. The virtual absence of sexual reproduction of ‘Tainong 1’ mango at low temperatures appears to be due largely to slow growth of pollen tube in vivo and to a low rate of successful fertilization.  相似文献   

14.
The effects of three set-sizes (12.5, 17.5 and 22.5 mm in diameter) and seven storage temperatures (0, 5, 10, 15, 20, 25 and 30 °C) on bolting, bulbing and seed yield in two onion (Allium cepa L.) cultivars ‘Hygro’ and ‘Delta’ were investigated. The incidence of bolting increased linearly with set-size and curvi-linearly with decreasing storage temperature. Time to inflorescence emergence and floret opening showed a curvi-linear response to storage temperature with the earliest inflorescence emergence and floret opening occurring at 5 °C and the latest at 30 °C for ‘Hygro’ and at 25 °C for ‘Delta’. Seed yield per umbel also showed a curvi-linear response to storage temperature with the lowest seed yield occurring at 30 °C for ‘Hygro’ and at 25 °C for ‘Delta’ and the highest seed yield at 5 °C. For a seed crop, storage of large sets (22.5 mm) of these cultivars at 5 °C for 120 days appeared to be optimum with 5–12% higher seed yield per umbel than that of 90 days storage. Bulb yield showed a curvi-linear response to storage temperature with the highest bulb yield occurring at 25 °C and the lowest at 5 °C.  相似文献   

15.
Low seed germination is a major problem in commercial rose propagation and breeding and is species-dependent. The present work selected four rose species previously un-examined to explore effective methods for improving seed germination and the relevant dormancy mechanism and its levels in seven experiments. The results showed that both pulp and achenes from the four rose shrubs had chemical substances that significantly inhibited seed germination with the inhibitory effect was more pronounced in pulp extract than of achenes. Single treatments of H2SO4 scarification, short-term cold stratification (<16 weeks) or warm stratification were less effective in breaking dormancy as indicated by lower germination index than their combinations. Comprehensive comparisons showed that among the six treatments the most effective for breaking dormancy was H2SO4 scarification followed by warm plus cold stratification, then H2SO4 scarification followed by cold stratification and finally warm plus cold stratification. Scarification with H2SO4 for 2–4 h ordinal followed by warm stratification at 20 °C for 4 weeks and cold stratification at 5 °C for 8 weeks was the best pretreatment for increasing seed germination percentage for Rosa multibracteata (81.4 ± 2.9%), Rosa hugonis (13.1 ± 6.0%), and Rosa filipes (62.7 ± 5.7%); and H2SO4 scarification for 4 h followed by cold stratification at 5 °C for 12 weeks was the best pretreatment for Rosa sericea (46.7 ± 8.7%). Our results suggest that these four species have only physiological dormancy caused by integrative roles of pulp, pericarp and embryo. The level of physiological dormancy was ranked as R. hugonis > R. sericea > R. filipes > R. multibracteata.  相似文献   

16.
White and purple garlic is harvested in the Bajio region of Mexico from February to August and then stored at room temperature. A complete study of quality changes under different conditions and how these conditions interact to determine the shelf life of the product has been lacking, nor have objective parameters to predict shelf life been determined. Six batches of 360 bulbs of garlic (Allium sativum L.) cv. Perla were stored for 190 days at 0 °C, 0 °C and 70% relative humidity (RH), 5, 20, 30 °C, and at room temperature (RT) (17.7 ± 7 °C). The weight loss, subjective firmness of the bulbs, clove penetration resistance, hue value, internal sprouting index, soluble solids and dry matter content of the cloves were recorded periodically. The weight loss and internal sprouting index had a negative correlation on the subjective firmness, penetration resistance, and hue of the cloves. Storage at 5 °C, 20 °C, and RT induced sprouting, and subsequent growth had an effect on a loss of firmness and color. Complete sprouting (>100%) induced a weight loss of 9–11% at these temperatures. In order to maintain an adequate safety margin for marketing, we propose an internal sprouting index of 50% to determining the effective shelf life of garlic cv. ‘Perla’. In accordance with this criterion and in conditions studying, shelf life at 0 °C was 155 days; at 5 °C and RT it was 80 days; and at 20 °C it was 60 days. These results lead us to conclude that it is possible to estimate the shelf life of garlic using the internal sprouting index.  相似文献   

17.
The plants of two onion cultivars Sturon and Stuttgarter were raised from sets and placed in a growth room at 12 °C, a light flux density of 120 μmol m−2 s−1 and a 16 h photoperiod. Cultivar Stuttgarter took 195 days to initiate, whereas time for initiation in cv. Sturon was 201 days. After initiation the plants were transferred to wide range of photo-thermal regimes consisting of six set point temperatures (6, 10, 14, 18, 22 and 26 °C) and four photoperiods (8, 11, 14 and 17 h day−1). An overall mean temperature for all developmental stages under each photo thermal combination was 12.2, 12.4, 15.9, 17.8, 23 and 24.4 °C. Time to inflorescence appearance, spathe opening and floret opening decreased linearly as temperature and photoperiod increased. At low to mild temperatures (12.2–17.8 °C), longer photoperiod enhanced florets per umbel, whereas at higher temperatures (23–24.4 °C), the floret number declined with lengthening photoperiods. As the photoperiod extension in each temperature advanced inflorescence appearance, spathe opening and floret opening and this would be beneficial in a programme to accelerate seed production in onion.  相似文献   

18.
The experiment was conducted at the experimental area of the School of Plant Sciences, University of Reading during 1996. The planting material comprised of sets (graded to 22.5 mm diameter) of two cultivars, Hygro and Delta. The sets were stored at 5 °C for nine chilling durations, between 10 and 90 days. A control treatment (sets stored at room temperature of 20 °C for days) was also included in the experiment for comparison. Sets of both cultivars treated for 90 days at 5 °C, produced nearly seven times more bolters than those treated for 20 days. Cool temperature treatment for 10 days was too short to induce bolting. Number of florets and percentage of seed bearing florets per umbel increased with lengthening cold durations and this resulted in higher seed yield per umbel. Mean bulb weight per plant was found to increase with shortening the period of low temperature treatment. For bulb crop, storage of sets at 20 °C for 90 days appears to be optimum, as it checked bolting and increased average bulb weight and bulb yields m−2 in both cultivars.  相似文献   

19.
One-year old scale bulblets of Lilium longiflorum Thunb. ‘Nellie White’ (Easter lily) were grown for 107 days during growth period 1 (GP-1) in six growth chambers under constant day/night temperature regimes of 30/26, 26/22, 22/18, 18/14, 14/10 and 10/6 °C. Subsequently, half of the plants in each temperature regime were transferred to 18/14 °C and the other half continued at the six constant temperature regimes. Both groups of plants were grown for an additional 89 days in growth period 2 (GP-2). Continuous temperatures of 26/22, 26/22–22/18 and 26/22–18/14 °C produced the greatest increase in basal bulb fresh weight (the main planted bulb), basal bulb circumference and stem bulb fresh weight, respectively. However, shifting these optimal temperatures to 18/14 °C during GP-2 resulted in a lower increase in basal bulb fresh weight and circumference. The optimum range for stem bulb production was expanded to 30/26–14/10 °C by shifting to 18/14 °C. The greatest increase for basal root growth occurred at 14/10–10/6 °C and for stem root growth at 14/10 °C. The temperature shift did not affect either root type. Maximum increase for stem length was at 26/22 and 22/18 °C and for stem plus leaf weight at 14/10 °C under constant temperature regimes. Transferring the plants from 10/6 to 18/14 °C resulted in the greatest increase in stem length and from 10/6 and 14/10 to 18/14 °C in the greatest increase in stem plus leaf weight. The greatest increase in the number of leaves occurred at 26/22 and 10/6 °C, but this growth parameter was unaffected by shifting to 18/14 °C, indicating that leaf number was determined in GP-1. Bulbils developed only when bulbs at high GP-1 temperature regimes (30/26 and 26/22 °C) were transferred to 18/14 °C during GP-2. Lower temperatures tended to favor an increase in flower bud production under continuous temperature regimes, while shifting to 18/14 °C increased flower bud production after initially high and low temperatures. Meristem abortion was greatest at 30/26 °C followed by 26/22 °C, but was not affected by temperature shifts in GP- 2. Thus, it is concluded that the abortion was induced or initiated during GP-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号