首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to examine the effect of paclobutrazol on the water consumption, plant water relations, gas exchange and development of strawberry tree seedlings (Arbutus unedo L.), to evaluate water resource management. Seedlings (8 cm in height) were subjected to a single drench of 60 or 100 mg of paclobutrazol and pot-grown in a greenhouse for 4 months. Untreated plants acted as control. Paclobutrazol reduced the development and improved the water status of the seedlings. At the end of the experimental period, it was seen that the two doses studied had reduced the plant dry weight, plant height and foliar development compared with the untreated plants. Paclobutrazol significantly reduced water consumption by 10% (60 mg) and 20% (100 mg) compared with the control. Plants treated with 100 mg showed the highest leaf water potential values at predawn. Paclobutrazol-treated plants presented turgor potential at values midday higher than control. This retardant stimulated a more efficient stomatal regulation, permitted an improved water status; however, it altered photosynthesis, reducing the plant growth. The lowered water consumption in paclobutrazol-treated plants was the result of a combination of mechanisms which reduced water loss through transpiration.  相似文献   

2.
This study examines the feasibility of using saline irrigation water for commercial pot cultivation of three ornamentals: Calceolaria hybrida, Calendula officinalis and Petunia hybrida. Two saline treatments were assayed: irrigation with low saline tap water (electrical conductivity = 1.16 dS m−1), and irrigation with a high saline solution of NaCl 100 mM + CaSO4 10 mM + MgSO4 2.5 mM (electrical conductivity = 12.5 dS m−1). When the control plants reached marketable size the watering was stopped and the plant response to drought was studied. Petunia and Calceolaria were tolerant to salinity. Petunia saline-treated plants reduced their growth slightly and increased N and chlorophyll contents in the leaves. Calceolaria experienced a strong reduction in growth and a delay in flowering but no toxicity symptoms or mortality was recorded. These species were moderate NaCl accumulators. Calendula was sensitive to salinity: 16% of the plants died and the surviving ones experienced a heavy reduction of growth, a decrease in chlorophyll and a large accumulation of NaCl in the leaves. Saline pre-conditioned plants of Calceolaria and Petunia were tolerant to drought. In these plants, leaf water content and, specifically, leaf relative water content were sustained longer than in non-pre-conditioned plants throughout the drought period. In Calendula, leaf relative water content decreased at the same rate in pre-conditioned and non-pre-conditioned plants. Consequently, salinization did not confer drought resistance upon this species. Possible factors determining the tolerance to drought in saline pre-conditioned plants are discussed.  相似文献   

3.
A study was conducted to elucidate the effect of water pillow (WP) irrigation method, a new alternative method to furrow irrigation, on the yield and water use efficiency (WUE) of hot pepper in a semi-arid climatic condition. In this research, treatments used were: (i) WP method and its 7-day irrigation interval (WP7), (ii) WP method and its 9-day irrigation interval (WP9), (iii) WP method and its 11-day irrigation interval (WP11) and (iv) furrow irrigation (FI) method and its 5-day irrigation interval (control) were employed. Although the plants were grown under different irrigation methods and interval conditions, there were no statistical differences in yield and biomass of hot pepper plants between FI and WP treatments (P < 0.05). Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values significantly increased with the application of WP irrigation method (P < 0.05). The highest WUE and IWUE values obtained from WP11 treatment in both years. As a result, we conclude that WP method is a way to save water and increase the yield in semi-arid areas where climatic conditions require repeated irrigation in the hot pepper production area.  相似文献   

4.
The effects of two types of hydrophilic polymers on drought and salt resistance of 1-year-old cuttings of Populus popularis 35–44 were investigated in this study. The polymers used in the experiments were Stockosorb 500 XL (Stockosorb) (a granular type, cross-linked poly potassium-co-(acrylic resin polymer)-co-polyacrylamide hydrogel) and Luquasorb® product (a powder type of potassium polyacrylate), which were manufactured by Stockhausen GmbH Krefeld and BASF Corporation in Germany, respectively. Drought or salt stress significantly decreased leaf photosynthesis and transpiration, as well as plant water-consumption and dry weight. A significant reduction occurred in Drought + NaCl-stressed plants. Soils treated by 0.5% Stockosorb or Luquasorb markedly alleviated the inhibition of plant growth and leaf gas-exchange that were caused by drought and/or salt stress treatments, and the occurrence of stress-induced leaf injury was delayed for 31 and 51 days, respectively. Experimental results showed that hydrophilic polymers in root media assisted P. popularis plants to tolerate the drought and salt stresses, due to the following reasons: (1) roots took up the retained water from hydrophilic polymers when water was deficient in the soil (Stockosorb-treated plants exhibited a higher rate of water uptake); (2) under saline conditions, Stockosorb and Luquasorb held Na+ and Cl in the soil solution due to their high water-holding capacity, thus limiting an excessive accumulation of toxic ions in the plant organs; furthermore, the exchangeable K+ that contained in Stockosorb and Luquasorb resulted in an improved K+/Na+ homeostasis in salinized plants; (3) hydrophilic polymers aided the plants to tolerate an interactive impacts of drought and salt stresses, which was mainly accounted for their water- and salt-holding capacities. In comparison, the growth and survival enhancement effects of the hydrophilic polymers on Drought + NaCl-treated plants was more evident by Luquasorb application, because it supplied water to plants at a lower rate during soil drying, thus prolonging the duration of water supply and allowed roots to grow in an environment of lower salinity for a long period of salt and drought stresses.  相似文献   

5.
以3 a生分根盆栽嘎拉苹果为试材,研究了不同根域交替灌溉不同水量对树体生长和水分利用效率的影响。结果表明,灌水量调控了苹果新梢二次生长的发生、生长时间和速率,每一根域每次灌水量为500 mL时,仅4/4根域灌水处理的新梢出现二次生长;灌水量为750 mL时,2/4、3/4和4/4根域灌水处理的新梢均出现二次生长;灌水量为1 000 mL时,1/4、2/4、3/4和4/4处理的新梢均有二次生长,其二次生长随着灌水根域的增多而时间提早,生长速率加快。每一根域灌水量相同时,植株主干、枝条、叶片、根系和总生物量随灌水根域增多而提高,750 mL与1 000mL根域灌水处理差异不显著。植株的水分利用效率随灌水根域的增多而降低。从确保树体正常生长和提高树体水分利用效率综合分析,2/4根域每次灌水750 mL为最佳灌溉方案。  相似文献   

6.
The presence of drought tolerant vegetation is essential for the longevity of an extensive green roof when irrigation is not installed. Earlier studies have examined performance of green roof plants under contrasting watering regimes and found that higher watering frequency provided better growth and survival rates. The effect of early watering regimes on the subsequent response of plants to persistent drought stress in extensive green roofs, however, has not been extensively studied. In order to evaluate the effects of watering regime during the establishment period of Sedum lineare on its growth and drought tolerance, two greenhouse experiments using simulated green roofs were conducted. It was found in the first experiment that a 2-day-interval watering regimen at the early planting stage produced greater root biomass and root size than those of 6-day- and 13-day-interval watering, indicating that deficit watering tended to induce thinner roots in S. lineare. In the second experiment, the remaining plants were subsequently subjected to a 28-day drought treatment. The roots of plants watered at 13-day-interval maintained the highest respiration activity among all plants during the drought period. Results suggest that an appropriate deficit watering regimen at the early planting stage may lead to smaller root size and higher root:shoot ratios in S. lineare, and thereby improve its drought tolerance performance on extensive green roofs.  相似文献   

7.
A pot experiment was conducted to investigate the effect of three drip irrigation methods (i.e. conventional drip irrigation (CDI), both sides of the root-zone irrigated with full watering, alternate drip irrigation (ADI), both sides of the root-zone irrigated alternatively with half of the full watering, and fixed drip irrigation (FDI), only one side of the root-zone irrigated with half of the full watering) on growth, physiology, root hydraulic conductance and water use of young apple tree under different nitrogen (N) or phosphorus (P) fertilization (i.e. CK (no fertilization), N1 (0.2 g N/kg), N2 (0.4 g N/kg), P1 (0.2 g P2O5/kg) and P2 (0.4 g P2O5/kg)). Results show that compared to CDI, ADI and FDI reduced mean root dry mass, daily transpiration, root hydraulic conductance (Kr), leaf photosynthesis rate, transpiration rate and stomatal conductance of young apple tree by 6.9 and 27.7, 29.3 and 45.0, 6.8 and 37.9, 2.5 and 4.8, 32.6 and 33.0, 22.1 and 22.3%, but increased leaf water use efficiency (WUE) by 31.3 and 29.8%, respectively when they saved irrigation water by 50%. Compared to the CK, N or P fertilization significantly increased Kr, and Kr was increased with the increased N or P fertilization level. There were parabolic correlations between Kr and root dry mass, daily transpiration and stomatal conductance. Our results indicate that ADI reduced transpiration rate significantly, but it did not reduce photosynthesis rate and Kr significantly, thus alternate drip irrigation improved WUE and the regulation ability of water balance in plants.  相似文献   

8.
This study was conducted to compare two water-saving practices, deficit irrigation (DI) and partial rootzone drying (PRD), and examine how they affected soil water distribution, water use, growth and yield of greenhouse grown hot pepper compared to commercial irrigation (CI). Control (CI) in which irrigation water was applied to both sides of the system when soil water content was lower by 80% of field capacity; deficit irrigation (DI50, DI75) in which 50% and 75% irrigation water of CI supplied to both sides of the root system; 1PRD with half of the root system exposed to soil drying and other half kept well-watered with 50% irrigation water of CI, and 2PRD with 50% irrigation water of CI supplied, half to fixed side of the root system. The results showed mean soil volumetric water content of DI75, DI50, 1PRD and 2PRD were lower by 21.06%, 28.32%, 24.48% and 34.76%, respectively than that of CI after starting the experiment. Water consumption showed some significant effect of irrigation treatments during the growing period of drought stress application, and therefore decreased in DI75, DI50, 1PRD and 2PRD to a level around 75% and 50% of CI. All the DI and PRD treatments resulted in a reduction of total dry mass of 7.29–44.10%, shoot biomass of 24.97–47.72% compared to CI, but an increase in the root–shoot ratio of 12.50–35.42% compared to the control and with significant differences between 2PRD, 1PRD, DI50 and CI. The yield of 1PRD was significantly reduced by 23.98% compared to CI (19,566 kg hm−2) over a period of 109 days after transplanting. However, the 1PRD treatment had 17.21% and 24.54% additional yield over the DI50 and 2PRD treatments and had 52.05% higher irrigation water use efficiency (IWUE) than CI treatment. At harvest, although there was a significant difference recorded as single fruit weight and single fruit volume were reduced under the DI and PRD treatments, total soluble solids concentration of fruit harvested under the water-deficit treatments were higher compared to CI. Stomatal conductance measured in fresh leaf was the lowest under 1PRD treatment relative to CI and other treatments. The low stomatal conductance of fresh-leaf issue observed in the work supported the root signaling mechanism reported earlier in plants having undergone partial root drying cycles.  相似文献   

9.
There has been an increased demand for landscaping plants in Lebanon as a result of numerous reconstruction projects. Sustainable landscape regulations have created a need for regionally adapted taxa, especially those with low water requirements. Therefore, water use of container-grown plants and the impact of fertilization on water use were studied in the following native species: Cercis siliquastrum L. (six mother trees), Malus trilobata Schneid (two mother trees) and Acer syriacum Boin and Gaill (one tree). Two-year-old containerized seedlings were grown at The Ohio State University (Columbus, USA) under two fertilizer rates: 25 or 100 mg N L−1 of 21 N–3.1 P–5.9 K water soluble fertilizer. Water use estimates were made by saturating the containers early in the morning, allowing them to drain for 1 h, weighing them and re-weighing approximately 5 h later. Although there were differences in seedling heights, those grown at 25 mg N L−1 were taller than those at 100, there were few differences in water use per seedling. In August, Cercis seedlings grown under 100 mg N L−1 had higher height adjusted water use (g water cm−1 height h−1, a method for standardizing water use among different sized plants) than those grown under 25 mg L−1. However, there were no differences in height adjusted water use in September attributed to fertilizer rates. In September, Acer seedlings had higher water use cm−2 leaf surface area under 25 than 100 mg N L−1. There were no differences in water use among the progeny from the six Cercis mother trees. However, the seedlings from one Malus tree had higher water use cm−2 leaf surface area than those from the other tree, even though the extant trees were separated by less than 20 m.  相似文献   

10.
针对京郊温室草莓生产中使用滴灌而水肥利用率仍偏低的现状,以‘红颜’为试验材料,在草莓结果期采用相同频率、相同浓度的水肥混合液,设计4个不同的用量,研究草莓结果期的适宜水肥用量.结果表明,草莓结果期灌水总量97.9 m3/667 m2、施肥总量87.8 kg/667 m2的中量滴灌处理较好,比常规滴灌节约灌溉水23.7%、节约纯养分25.3%,增产13.4%,糖度增加1.1个百分点,水分生产效率提高2.4 kg/m3,水分生产效益提高47.2元/m3.建议草莓结果期11~次年3月每7~10 d滴灌1次,3~5月每3~5 d滴灌1次,每次灌水2.6~3.5 m3/667 m2,滴施水溶肥2.5~3.8 kg/667 m2为宜.  相似文献   

11.
Processing tomato is a high water demanding crop, thus requiring irrigation throughout growing season in arid and semiarid areas. The application of deficit irrigation (DI) strategies to this crop may greatly contribute to save irrigation water. A two-year study was carried out in order to assess the effects of DI upon water productivity, final biomass, fruit yield and some quality traits of open-field processing tomato cv. Brigade in a typical semi-arid Mediterranean environment of South Italy. Four irrigation treatments were studied: no irrigation following plant establishment (V0); 100% (V100) or 50% (V50) evapotranspiration (ETc) restoration up to fruit maturity, 100% ETc restoration up to flowering, then 50% ETc restoration (V100-50). Total dry biomass accumulation was significantly depressed by early soil water deficit in V0; irrigation at a reduced rate (50% ETc) from initial stages (V50) or from flowering onwards (V100-50) did not induce any losses in final dry biomass. The marketable yield did not significantly differ among plots irrigated, but an averaged irrigation water saving of 30.4% in V100-50 and 46.2% in V50 was allowed as compared to V100. Marketable yield was negatively affected by the early water shortage in V0, due to the high fruit losses (>44%). The effects of DI on fruit quality were generally the converse of those on fruit yield. DI improved total soluble solids content, titratable acidity and vitamin C content. Water use efficiency was positively affected by DI, suggesting that the crop does not benefits from the water when this last is supplied to fulfil total crop requirements for the whole season. Yield response factor, which indicates the level of tolerance of a crop to water stress, was 0.49 for total dry biomass (Kss) and 0.76 for marketable yield (Ky), indicating that in both cases the reduction in crop productivity is proportionally less than the relative ET deficit. In conclusion, the adoption of DI strategies where a 50% reduction of ETc restored is applied for the whole growing season or part of it could be suggested in processing tomato, to save water improving its use efficiency, minimizing fruit losses and maintaining high fruit quality levels. This aspect is quite important in semi-arid environments, where water scarcity is an increasing concern and water costs are continuously rising.  相似文献   

12.
为筛选出芹菜种植最佳灌溉量,开展芹菜不同灌溉量试验,为芹菜高产及节水灌溉提供科学依据。试验设置5个处理,分别为:T+5:每667 m2灌溉126 m^3;T+10:每667 m2灌溉132 m^3;T-5:每667 m2灌溉114 m^3;T-10:每667 m^2灌溉108 m^3;对照:每667 m2灌溉120 m^3。试验结果表明,T-5处理在株高、茎粗、叶柄数等植株长势均优于对照,干物质质量较对照增加13.7%;芹菜产量最高,为5669.50 kg,产量、产值较对照提高16.28%;T-5处理在节水5%的情况下,纯收益高于对照16.67%。综上所述,每667 m2灌溉114 m^3高产且节水,是本试验处理中经济效益较好的灌溉处理,适宜指导本地区大棚芹菜微喷灌溉栽培。  相似文献   

13.
灌溉方式和灌水量对梨产量和水分利用效率的影响   总被引:5,自引:1,他引:5  
连续2年对8~9年生黄冠梨树采用不同灌溉方式和灌水量的试验,结果表明,树盘1/2区域交替灌溉较常规灌溉用水量减少2/5,其蒸腾速率显著低于常规灌溉,而水分利用效率显著高于常规灌溉,2者之间的光合速率、产量和单果重不存在显著差异。树盘1/2区域固定灌溉的水分利用效率介于2者之间,但产量和单果重与2者差异显著。  相似文献   

14.
The response of cv. Muhasan trees and its fruit characteristics to a 50% regulated deficit irrigation (RDI) was studied. The general response to the reduced irrigation was relatively small. However, the schedule of water application was very significant for various fruit characteristics. In the best schedule the 50% reduction in annual irrigation water reduced the oil yield over 4 years by only 12.2% and that of the fruit yield by 18.5%. The most efficient schedule was based on applying all the irrigation water after stone hardening. In lighter soils however, with lower water holding capacity or in regions with a lower rainfall diverting some of the water to the pre-bloom and fruit set period might be needed. The fruit mesocarp/endocarp (flesh/pit) ratio was dependent on the water availability during the stone hardening period. This ratio was significantly improved when water availability during the stone hardening period was reduced. The rate of oil accumulation was also affected by the irrigation schedule but was about the same in ‘on’ and ‘off’ years. Fruit growth was less affected by the irrigation schedule but most significantly by the yield load. All the affects of the irrigation schedules were more expressed in the ‘on’ years than in the ‘off’ years. No clear cut differences or consistent effects of the irrigation schedule were found on the degree of alternant bearing and mineral content of the leaves.  相似文献   

15.
A study was conducted to investigate the effects of paclobutrazol (PBZ) on ion leakage (IL), proline content and activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) of 1-year-old ‘Olour’ mango plants subjected to NaCl stress. Plants were treated with two levels of salt, i.e., 0.0 g NaCl (control) and 25 g NaCl/25 kg soil and three levels of paclobutrazol (PBZ) solution (0.0 (control), 750 and 1500 mg/l). Ion leakage, proline content and activities of antioxidant enzymes were significantly altered by both salinity and PBZ treatments. Results indicated that PBZ (1500 mg/l) mitigated the salinity stress and reduced ion leakage of mango seedlings by 64% over non-PBZ-treated salinised plants. PBZ upregulated the endogenous proline content and salinised plants treated with PBZ (1500 mg/l) had 17% higher proline content than salinised plants without PBZ treatment. Higher antioxidant enzyme activity was also observed in salinised plants treated by PBZ than salinised plants without PBZ treatments. Moreover, higher dose of PBZ (1500 mg/l) resulted in higher activity of these enzymes in mango leaves. In comparison to salinised plants without PBZ treatment, salinised plants treated with PBZ (1500 mg/l) had higher SOD (24%), CAT (46%) and POD (163%) activities. Our results suggest that PBZ application under salt stress conditions alters the equilibrium between free radical production and enzymatic defense reactions in mango by enhancing the proline content and free radical scavenging capacity.  相似文献   

16.
The role of drought-induced proline accumulation in coconut leaves is still unclear. With the objective of evaluating the impact of water shortage on leaf osmotic potential, proline accumulation and cell membrane stability in young plants of two Brazilian Green Dwarf coconut ecotypes from contrasting areas (Brazilian Green Dwarf from Una, Bahia, UGD, and from Jiqui, Rio Grande do Norte, JGD), a pot experiment was conducted under greenhouse conditions. Three drought cycles consisting of suspension of irrigation until the net photosynthetic rate (A) approached zero and rewatering until recovery of A to 85% of the irrigated control plants. Pre-dawn leaf water potential (ΨPD) reached −1.2 MPa at the point of maximum stress (PMS). Dry matter production and leaf area were severely reduced by drought treatment in the two ecotypes. Corrected values of osmotic potential were significantly reduced in stressed plants of the two ecotypes. Green dwarf coconut palm showed low osmotic adjustment (from 0.05 to 0.24 MPa) and significant accumulation of proline (from 1.5 to 2.1 times in relation to control) in leaflets in response to water deficit. Considering the growth reduction observed in both ecotypes, proline was not associated to osmoregulation. On the other hand, the absence of membrane damage, as indicated by electrolyte leakage method, suggests that the protective role of proline in this specie can be more important. The two ecotypes of Green dwarf coconut palm behaved similarly in the present experiment for most traits evaluated. Slight differences among the ecotypes were observed with respect to the response to treatments, such as higher proline accumulation in JGD.  相似文献   

17.
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements.  相似文献   

18.
Rational irrigation scheduling based on sensing drought stress directly in plants is becoming more important due to increasing worldwide scarcity of fresh water supplies. In order to evaluate a set of potential biochemical and physiological stress indicators and select the best drought stress markers in apple trees, two experiments with potted trees and an experiment with intensive orchard grown apple trees ‘Elstar’ and ‘Jonagold Wilmuta’ were conducted in early summer in tree following years. Biochemical parameters: ascorbic acid, glutathione, tocopherols, chlorophylls, carotenoids, free amino acids, soluble carbohydrates, and physiological parameters already known as stress indicators in apple trees: predawn and midday leaf water potential, net photosynthesis (Pn), stomatal conductance (gs), transpiration (Tr) and intercellular CO2 concentration (Ci) were measured in leaves of apple trees subjected to different intensities of slowly progressing drought or no drought. Our study pointed out zeaxanthin and glutathione as the best drought stress markers in apple trees. Ascorbate and sorbitol appeared to be reliable indicators of moderate drought only. Responses of other tested biochemical parameters were not consistent enough to prove their role as drought stress markers in apple trees. Relative air humidity should be taken in consideration when physiological parameters gs, Pn, Tr and Ci are used as drought stress markers in apple trees. Our study revealed that in situations where low relative air humidity affects gs and with gs connected physiological parameters, biochemical markers may be better tool for determination of drought stress intensities in apple trees.  相似文献   

19.
The purpose of this study was to analyze the physiological and morphological response of carnation plants to different levels of irrigation and to evaluate regulated deficit irrigation as a possible technique for saving water through the application of controlled drought stress. Carnations, Dianthus caryophyllus L. cultivar, were pot-grown in an unheated greenhouse and submitted to two experiments. In the first experiment, the plants were exposed to three irrigation treatments: (control); 70% of the control (moderate deficit irrigation, MDI) and 35% of the control (severe deficit irrigation, SDI). In the second experiment, the plants were submitted to a control treatment, deficit irrigation (DI, 50% of the control) and regulated deficit irrigation (RDI). After 15 weeks, MDI plants showed a slightly reduced total dry weight, plant height and leaf area, while SDI had clearly reduced all the plant size parameters. RDI plants had similar leaf area and total dry weight to the control treatment during the blooming phase. MDI did not affect the number of flowers and no great differences in the colour parameters were observed. RDI plants had higher flower dry weight, while plant quality was affected by the SDI (lower number of shoots and flowers, lower relative chlorophyll content). Leaf osmotic potential decreased with deficit irrigation, but more markedly in SDI, which induced higher values of leaf pressure. Stomatal conductance (gs) decreased in drought conditions more than the photosynthetic rate (Pn). Osmotic adjustment of 0.3 MPa accompanied by decreases in elasticity in response to drought resulted in turgor less at lower leaf water potentials and prevented turgor loss during drought periods.  相似文献   

20.
The importance of root size system has long been recognized as crucial to cope with drought conditions. This investigation was conducted to: (i) evaluate the variability in root size system of hot pepper at maturity; (ii) estimate the effect of root size system on yield under drought conditions; and (iii) effect of water stress on xylem vessel development and total xylem cross-sectional area in roots of hot pepper cultivars. Twelve diverse hot pepper cultivars were grown in wooden boxes with two different water treatments, normal and in 50% water application as water deficit condition. Mean primary root length (PRL) showed a significant positive correlation with final fruit yield at normal as well as stressed condition. Total dry mass of fruit was reduced by 34.7% in drought treatments (DI) compared to full watered treatment (FI). At harvest, water-stressed plants had 21% lower root dry weight mass but higher root:shoot ratio other than FI. PRL, lateral root density, total xylem area per root cross-section showed a significant positive relationship with fruit yield. Also, lateral root density was higher in cultivars with higher xylem density, particularly in tolerant cultivars. Lateral root density (r = 0.847, P < 0.001) and total xylem cross-sectional area in root (r = 0.926, P < 0.001) were tightly related with total biomass production. The importance of root traits contributing to withstand drought in hot pepper is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号