首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Sharma 《Avian diseases》1981,25(4):882-893
Chickens of 2 genetic lines (lines P and N) were inoculated with a pathogenic strain of Marek's disease (MD) virus (MDV) and chronologically examined for disease response and natural killer (NK) cell expression. The NK cell reactivity was assayed in an in vitro cytotoxicity assay in which effector cells from the spleen of test chickens were reacted with 51Cr-labeled LSCC-RP9 target cells. Chickens of line P developed progressive debilitating disease and a high incidence of gross tumors and death. The NK cell reactivity of line-P chickens infected with MDV was significantly lower than that of uninfected control hatchmates. In contrast, NK cell levels were significantly elevated in MDV-inoculated line-N chickens that were resistant to MD and in chickens of lines P or N that had been inoculated with herpesvirus of turkeys (HVT). NK cell levels were also elevated in line P if chickens were vaccinated with HVT before infection with MDV. Inhibition of NK reactivity in susceptible chickens and elevation of reactivity in naturally resistant or vaccinated chickens may indicate a role for the NK cell system in regulating resistance to MD.  相似文献   

2.
Cell-mediated immune responses are important for protective immunity to Marek’s disease (MD), especially because MD herpesvirus (MDV) infection is strictly cell-associated in chickens with the exception of the feather follicle epithelium. A system previously developed using reticuloendotheliosis (REV)-transformed cell lines stably expressing individual MDV genes allows the determination of relevant MDV proteins for the induction of cytotoxic T lymphocyte (CTL) responses. To examine the importance of glycoproteins for the induction of CTL, the MDV genes coding for glycoproteins (g) C, D, E, H, I, K, L, and M were stably transfected into the REV-transformed chicken cell lines RECC-CU205 (major histocompatibility complex (MHC): B21B21) and RECC-CU91 (MHC: B19B19). All transfected cell lines were lysed by REV-sensitized, syngeneic splenocytes obtained from MD-resistant N2a (MHC: B21B21) and MD-susceptible P2a (MHC: B19B19) chickens, indicating that the expression of individual MDV glycoproteins did not interfere with antigen processing pathways. Only cell lines expressing gI were recognized by CTL from both N2a and P2a MDV-infected chickens. Cell lines expressing glycoproteins gC and gK, and to a lesser extent, gH, gL, and gM were lysed by syngeneic MDV-sensitized splenocytes from N2a birds but not P2a birds. In contrast, gE was recognized by MDV-sensitized effector cells from the P2a line and not the N2a line. Glycoprotein D was not recognized by either line, with the exception of one marginally significant P2a assay. These results indicate that late viral glycoproteins are relevant for the induction of cell-mediated immunity during MDV infection.  相似文献   

3.
Two experiments were conducted to study the cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) from chickens inoculated with Marek's disease virus (MDV) against a Marek's disease-derived lymphoblastoid cell line (MSB-1) and to associate the cytotoxicity with incidence of disease. In experiment I, moderately susceptible random-bred, specific-pathogen-free chickens were inoculated with MDV (group 1), vaccinated with a herpesvirus of turkeys (HVT) and inoculated with MDV (group 2), vaccinated with HVT and inoculated with chicken kidney cells (CKC; group 3), and inoculated with CKC only (group 4). Cytotoxic activity in the PBL was detected initially during the first week after MDV inoculation and periodically throughout the observation period (groups 1, 2, and 3). Throughout the observation period, the magnitude of cytotoxic activity was similar in PBL from groups 1 and 2 chickens. The PBL from both surviving and fatally infected chickens (groups 1 and 2) were similarly cytotoxic when sampled during the first 16 days after MDV inoculation. In experiment II, inbred genetically susceptible (line 7) and resistant (line 6) chickens were used. Cytotoxic activity of PBL of significantly greater magnitude was associated with a lower mortality or incidence of gross lesions (or both) in MDV-inoculated line 6 (group B) and HVT-vaccinated and MDV-inoculated line 7 (group C) chickens compared with activity of PBL from MDV-inoculated line 7 (group A) chickens. The cytotoxic activity of PBL from individual inbred chickens did not correlate with the outcome of the infection.  相似文献   

4.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

5.
Bursa- and thymus-dependent functions were examined in Marek's disease (MD)-susceptible normal chickens and in chickens treated with 5 and 16 mg of cyclophosphamide (CY) at the time of hatching. Chickens not exposed to Marek's disease virus (MDV) and treated with CY temporarily lost mitogenic response to concanavalin A but regained full response after 5 weeks. Bursa-dependent functions, such as presence of germinal centers in spleen and cecal tonsils, morphologic features of bursa, and sheep red blood cell antibody response were completely lost in chickens treated with 16 mg of CY and only partly retained in chickens treated with 5 mg of CY. In chickens exposed to MDV, the degree of thymus-dependent spleen cell mitogenic response was directly related to frequency and severity of MD. Chickens treated with 16 mg of CY had a mild mitogenic depression and low frequency and severity of MD lesions, whereas those treated with 5 mg of CY and those not treated had marked mitogenic depression and high frequency and severity of MD. Suppressions of bursa- and thymus-dependent functions by MDV alone were also evident when comparing MDV-exposed and nonexposed chickens. The results also indicate that presence of small, residual amounts of humoral factor(s) may enhance MDV oncogenesis.  相似文献   

6.
A reduction in the secretion of thymic hormones, and in particular thymulin, can be demonstrated in chickens following the thymic atrophy induced by Marek's disease virus (MDV) infection. In very sensitive histocompatible (B13/B13) chickens inoculated with the HPRS-16 strain of MDV at 10 days of age, treatment with synthetic thymulin by daily subcutaneous injection failed to modify the time course of Marek's disease (MD) and did not prevent the development of macroscopic tumors. No effect was noted on the levels of neutralizing anti-viral antibodies. Nevertheless, thymulin treatment resulted in significant suppression of the cellular immune response 4-6 weeks post-inoculation, monitored by splenic cytotoxicity against MD-specific and natural killer-sensitive lymphoblastoid cell lines.  相似文献   

7.
Marek's disease virus (MDV) is an oncogenic cell-associated herpesvirus that causes T-cell lymphoma in chickens. Lymphoproliferative neoplasms in Marek's disease (MD) occur in various organs and tissues, including the viscera, peripheral nerves, skin, gonads, and musculatures. MDV is restrictively produced in the feather follicle epithelial (FFE) cells, and it gains access to the external environment via infected cells or as infectious enveloped cell-free virus particles. The goals of the present study were to 1) determine whether the MDV-induced skin lesions are neoplastic in nature or inflammatory reactions to viral infection, 2) determine whether physical presence of feather follicles (FF) is necessary for skin tumor development, and 3) study the role of skin epithelial cells not associated with feathers or FF in the replication and dissemination of infectious virus particles. Scaleless chickens that produce only a few scattered feathers and no sculate scales along the anterior metatarsi were used as a unique model to study the pathogenesis of dermal lesions. Histologic and immunohistochemical analysis revealed that the cutaneous lesions were tumorous as was manifested by massive accumulation of lymphoblasts and extensive activation of meq oncoprotein, the hallmark of MDV oncogenesis, within the skin lesions. Neoplastic cutaneous lesions in the scaleless chickens indicate that feather follicles are not necessary for skin tumor development. Finally, our preliminary data indicate that inoculation with supernatant fluid from homogenized and sonicated skin samples of MDV-infected scaleless chickens induces MD in susceptible birds, suggesting that skin epithelial cells not associated with FF also harbor infectious viral particles.  相似文献   

8.
9.
The phosphorylated polypeptide (pp)38 of oncogenic Marek's disease (MD) herpesvirus (MDV) is expressed during lytic infections in vivo and in vitro, but its functions have not been fully elucidated. The quail cell line QT-35, latently infected with MDV, was used to generate QTP32 in which pp38 is expressed under control of a tetracycline controlled promoter to examine possible functions of pp38. Induction of pp38 did not influence late MDV genes expression, but it enhanced mitochondrial dehydrogenase activity significantly. Two new pp38 splice variants were found in induced QTP32 cells, in additional in vitro systems and MDV-infected chickens. Differential expression of full-length pp38 and splice variants suggests that the splice variants are important during latency and perhaps transformation. Polypeptides of 40 and 20kDa were detected by Western blot using monoclonal antibody H19. These polypeptides were also produced in DF-1 cells transfected with a pp38 construct in which the splice acceptor sites had been mutated. Our results add important new information to the role of pp38 in the pathogenesis of MD. The data suggest that pp38 and the two newly described splice variants may influence metabolic activity, which may have important consequences for the understanding of latency and tumor development.  相似文献   

10.
A Marek's disease (MD) lymphoblastoid cell line, MDCC-MSB1-41C, was highly transplantable and lethal for chickens. Autopsies showed extensive metastasis in various organs. The transplantabilities of the parent cell line, MDCC-MSB1, and another derivative line, MDCC-MSB1-33C, were transient. MD virus (MDV) could be isolated from the kidneys but not from the peripheral blood leukocytes of chickens inoculated with the MSB1-41C cell line. In addition, anti-MDV antibodies were produced both in chickens inoculated with this cell line and in controls raised with inoculated chickens, but several attempts to isolate MDV from this cell line in vitro failed.  相似文献   

11.
12.
Comparison of blood and feather pulp (FP) samples for the diagnosis of Marek's disease (MD) and for monitoring Marek's diseases vaccination in chickens (serotypes 2 and 3 vaccines) by real time-PCR was evaluated. For diagnosis of MD, quantification of serotype 1 Marek's disease virus (MDV) DNA load was evaluated in 21 chickens suffering from MD. For each chicken, samples of blood and FP were collected and MDV DNA load was quantified. Solid tumors are the sample of choice for MD diagnosis by real time-PCR and, hence, 14 solid tumors were included in the study as positive controls. Load of MDV DNA in FP was equivalent to that detected in solid tumors (threshold cycle [Ct] ratio above 1.7). MDV DNA load in blood samples was lower than in solid tumors and FP samples. Nonetheless, there was a statistically significant correlation of the results obtained from FP and blood (r = 0.92). Results of the Pearson correlation test showed that Ct ratio values of 1.7 in FP correspond to Ct ratio values of 1.2 in peripheral blood. For monitoring vaccines, serotypes 2 and 3 MDV DNA load was evaluated in blood and FP samples of vaccinated chickens. Serotype 2 MDV DNA load was evaluated in samples of blood and FP from 34 chickens vaccinated with SB-1 strain. Serotype 3 MDV DNA load was evaluated in blood and FP samples from 53 chickens vaccinated with HVT strain. For both serotypes, frequency of positive samples and load of vaccine DNA was higher in FP than in blood samples. There was not a statistically significant correlation between the load of SB-1 DNA (r = 0.17) or HVT DNA (r = -0.04) in FP and blood. Our results show that the load of serotypes 1, 2, and 3 DNA is higher in FP than in blood. Diagnosis of MD could be done using both FP and blood samples. Monitoring of MD vaccination by real time-PCR required the use of FP samples. There were a high percentage of false negative samples when using blood to detect serotypes 2 and 3 MDV by real time-PCR.  相似文献   

13.
For the easy survey of Marek's disease virus (MDV), feather tip-derived DNA from MDV-infected chickens can be used because feather tips are easy to collect and feather follicle epithelium is known to be the only site of productive replication of cell-free MDV. To develop a diagnostic method to differentiate highly virulent strains of MDV from the attenuated MDV vaccine strain, CVI988, which is widely used, nested polymerase chain reaction (PCR) was performed to detect a segment of the meq gene in feather tip samples of chickens experimentally infected with MDV. In chickens infected with Md5, a strain of oncogenic MDV, the meq gene was consistently detected, whereas the L-meq gene, in which a 180-base pair (180-bp) sequence is inserted into the meq gene, was detected in CVI988-infected chickens. Moreover, the meq gene was mainly detected even in chickens co-infected with both Md5 and CVI988. These results suggest that this method is appropriate for the surveillance of the highly virulent MDV infection in the field.  相似文献   

14.
A non-immune natural killer-type cell population (NK) from 6-to 12-week old chickens was able to kill MSB-1 Marek's disease (MD) tumor cells in vitro; as measured by the 51Cr-release cytotoxicity assay. Removal of T cells, B cells, adherent cells, or any combination of the three populations of cells did not result in diminished levels of cytotoxicity of the remaining spleen cells against MSB-1 cells. The cytotoxicity of chicken NK cells could be rapidly augmented by polyinosinic-polycytidylic acid (poly I:C) and by the Cal 11914 strain of Newcastle disease virus (NDV), but not by the TCND strain of NDV which is not an interferon (IFN) inducer, indicating that IFN play a role in augmentation of the NK activity in chickens.  相似文献   

15.
Two experiments were used to examine the potential role of IFN-gamma in chickens infected with reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). First, chickens were infected with REV and/or MDV at 5 days of age and examined from 3 to 50 days post-infection (dpi). In REV+MDV co-infection chickens, IFN-gamma ELISA demonstrated a 3-fold increase at 7 dpi compared to the controls, while REV alone caused a 5-fold increase, the IFN-gamma levels peaked, and then gradually decreased. IFN-gamma levels significantly decreased in MDV infection at 3 dpi and 15 dpi. Second, experiments were designed to determine the effects of different viruses and ConA on IFN-gamma production. For REV- or MDV-infected chickens, the IFN-gamma levels decreased slightly after adding ConA. This is the first report of IFN-gamma production in SPF chickens infected with REV and MDV measured by directly quantitative method.  相似文献   

16.
The effects of passive immunization with immunoglobulin Y (IgY) on the pathogenesis of Marek's disease (MD) were examined in an experimental line of White Leghorn chickens highly susceptible to MD. Purified IgY with anti-MDV antibody activity, when injected into chicks, delayed the development of MDV viremia and lesions until 9 days postinoculation (PI) with Marek's disease virus (MDV). The blastogenic response of spleen cells to concanavallin-A was depressed at 6 days PI in the birds without passive immunization, whereas it was not totally depressed until 17 days in birds passively immunized with IgY anti-MDV antibody.  相似文献   

17.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

18.
To demonstrate the relationship between tumour development and virus replication, eight specific-pathogen-free pullets of line P2 (Group P; 14 weeks old) and five adult chickens (Group A; 96 weeks old) were inoculated with virulent Marek's disease virus (vMDV). Five chickens of Group P died or were euthanised due to moribund condition following the development of neoplastic lesions between days 53 and 91. On histopathological examination, these lesions were characterised by the proliferation of lymphoid cells of variable size. On analysis by polymerase chain reaction (PCR), the MDV meq gene was detected in Group P from day 21, and it was continuously identified in five chickens until they died or were euthanised. Abnormal signs and histopathological changes were not observed in chickens of Group A. The MDV meq gene was temporarily detected in some chickens of Group A, but it remained almost undetectable throughout the experimental period. In older chickens inoculated with vMDV, the onset of MD lymphoma development tended to be delayed as compared with the young chicks. The relationship between MD lymphoma development and virus replication in older chickens has been suggested. Our data might indicate the underlying existence of an age-related resistance to vMDV challenge.  相似文献   

19.
鸡马立克病研究进展   总被引:2,自引:0,他引:2  
鸡马立克病是由马立克病病毒引起的一种淋巴细胞增生性传染病,通常以外周神经和包括虹膜和皮肤在内的其他各种器官和组织的单核细胞浸润为特征.目前,仍然严重威胁着养禽业的发展,疫苗虽然可以预防马立克病的发生,但免疫失败时有发生,常常导致本病的局部暴发.论文对该病的病原、流行病学、临床症状、病理变化、发病机理、诊断及防控等方面进行了综述.  相似文献   

20.
Marek's disease (MD) is a disease of chickens that occurs worldwide and has serious economic consequences. MD can present as one of several forms, with the most commonly occurring forms being the lymphoproliferative diseases. Under experimental conditions, an early mortality syndrome has been recognized following infection by some but not all strains of MD virus (MDV). This is the first report of a confirmed case of mortality due to naturally occurring MDV infection in 1-week-old, nonvaccinated, chickens. Necrotizing lesions were observed in the bursa of Fabricius, lung, duodenum, jejunum, and proventriculus, and large intranuclear inclusion bodies were a striking feature in tissues with lesions in all birds. Immunohistochemical staining for the pp38 protein of MDV revealed abundant pp38 antigen in the affected tissues, confirming the presence of MDV within the lesions. PCR yielded an amplicon with 97% homology to the meq gene of MDV. No evidence of co-infection by either of the immunosuppressive agents chicken anemia virus and infectious bursal disease virus was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号