首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

2.
《Applied soil ecology》2007,35(2):363-369
A greenhouse experiment based on a dual mode of mycorrhizal inoculation simulated the formation of mycorrhizal symbiosis at two different stages of plant succession on coalmine spoil banks. The model plants were inoculated either with propagules of the arbuscular mycorrhizal fungi (AMF) Glomus mosseae BEG95, which represented the initial stages of succession, or were provided with the pre-established extraradical mycelium (ERM) network of the same AMF isolate, which simulated later succession stages. The plant species used – non-mycotrophic Atriplex sagittata and Sisymbrium loeselii, and mycotrophic Tripleurospermum inodorum, Calamagrostis epigejos and Elytrigia repens – represented succession dominants at those sites. Even though the grasses were colonised in both mycorrhizal treatments, the presence of an established ERM network increased the intensity of their colonisation and arbuscular abundance. No trace of colonisation of non-mycotrophic plants was found in the treatment inoculated with propagules. Surprisingly, marked colonisation, including abundant arbuscules, was observed when non-mycotrophic plants were grown in the presence of a pre-established ERM network. In A. sagittata, arbuscules were found at maturity and senescence of the plants after 16 weeks of growth. In S. loeselii, however, the arbuscules were found at the vegetative stage of the leaf rosette after 8 weeks and then completely disappeared during the following weeks. When the ability of propagules and ERM to induce mycorrhizal colonisation is compared, it seems that the established mycelium probably has an enhanced potential to colonise roots of plants, even if the plants belong to species usually not hosting mycorrhizal fungi.  相似文献   

3.
An agricultural use of reclaimed coal‐mine spoil banks is limited to nonfood crop uses and provides potential for biofuel crops. Two high‐biomass crops—Galega orientalis and Helianthus tuberosus—were cultivated in a greenhouse pot experiment conducted in sterilized and nonsterile spoil bank clay. We aimed (1) to determine the possibility of reducing the applied rate of organic amendments (thus decreasing the costs of spoil‐bank reclamation) and (2) to assess whether the inoculation with arbuscular mycorrhizal fungi (AMF) can improve plant growth and biomass accumulation of bioenergy crops even in nonsterile soil containing naturally occurring AMF. The spoil substrate was either unamended or treated with a mixture of composted urban waste and ligno‐cellulose at a rate corresponding to 40 t ha–1. Three native AMF isolates or three isolates from the International Bank of Glomeromycota (BEG) originating from man‐made ecosystems were used for inoculation. Generally, both plant species positively responded to both mycorrhizal inoculation and organic amendment. While G. orientalis did not show any preferences towards the AMF inoculum origin in the nonsterile soil, for H. tuberosus the specific combination of organic amendment and BEG isolates resulted in highest yields of shoot biomass. The study shows that the successful planting of both tested crops requires the organic amendment. However, its dosage can be substantially reduced. The effectiveness of mycorrhizal inoculation can vary for the combination of plant species and the origin of the applied AMF.  相似文献   

4.
Tropical legumes from fallowed areas in Senegal were inoculated with a tropical strain of Glomus aggregatum to test their relative mycorrhizal dependency in a greenhouse experiment. Twelve species among the seventeen tested showed a significant growth increase when mycorrhizal. Their mycorrhizal dependency varied from 92.7% for Indigofera stenophylla to 26.2% for Prosopis julifora. A significant positive correlation was found between mycorrhizal dependency and root hair length. The results confirm the high mycorrhizal dependency of legumes which are economically very important in the restoration of soil fertility of fallowed areas in the Sahelian and Soudano-Sahelian zones.  相似文献   

5.
AM真菌对烟苗生长及某些生理指标的影响   总被引:6,自引:0,他引:6  
在低浓度营养液条件下,利用漂浮育苗技术培育烟苗,于播种期、小十字期、生根期分别接种不同的AM真菌,研究了它们对烟苗生长、营养和某些生理指标的影响。结果表明,越早接种AM真菌,其侵染率越高;播种期接种,侵染率达到39.2%~59.6%。AM真菌的菌根效应因菌种(株)不同而异,接种球囊霉真菌(BEG-141)后,显著增加烟苗干重、磷含量、氮磷钾吸收量、叶绿素含量,以及根系硝酸还原酶、超氧化物歧化酶和几丁质酶活性。表明在漂浮育苗技术中,播种期接种适宜的AM真菌是培育壮苗的有效措施。  相似文献   

6.
Abstract

A greenhouse experiment was conducted to determine the combined effects of lime, nitrogen and phosphorus on mycorrhizal activity in an oxisol subjected to imposed erosion using Vigna unquiculata (L.) Walp cv. ‘California Blackeye No. 5’ (cowpea) as a test plant. Cowpea was grown in the soil in the presence or absence of the vesicular‐arbuscular mycorrhizal fungus Glomus aqgregatum (Schenck & Smith emend. Koske) with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu and B; and with basal nutrients plus lime, N and P (complete). The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness measured in terms of leaf disc P content increased significantly when the eroded soil was amended with a combination of all of the nutrients and inoculated with Glomus aggregatum. Vesicular‐arbuscular mycorrhizal inoculation and nutrient amendment was also accompanied by significant increase in shoot P, Cu, Zn and N content, and nodule, shoot and root dry matter yield. The findings of this study demonstrate the importance of replacing lost nutrients before legumes could be successfully established on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

7.
A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal‐inoculation treatments had increased total N content, available‐P content, and aggregate stability of the soil. Values of water‐soluble C and water‐soluble carbohydrates were increased only in the mycorrhizal‐inoculation treatments. Rhizosphere soil from the mycorrhizal‐inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease‐BAA, acid phosphatase, and β‐glucosidase) than the control soil. In the short‐term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants.  相似文献   

8.
Summary Wheat cultivars assumed to be non-susceptible to vesicular-arbuscular (VA) mycorrhizae became colonized, and this effect persisted under different growth conditions. Colonization of all cultivars was similar regardless of the amount of inoculum and the time interval of inoculation. Different plant growth temperatures and the support given by the culture media, inoculation with different endophytes, and inoculation with sterilized and unsterilized spores affected VA colonization levels, although the level of colonization reached in cv. Champlein was similar to that reached in cv. 7-Cerros under each condition. VA mycorrhizal colonization was also affected by different plant growth conditions. After VA reinoculation, the plant dry weight of Castan and 7-Cerros increased, but not Negrillo and Champlein cultivars. VA mycorrhizae increased the shoot dry weight of 7-Cerros only, but not of Champlein, when grown at 35/24°C, and had no effect on the dry weight of either cultivar grown at 18/12°C and 42/24°C. Inoculation with Glomus mosseae increased the dry weight of the cultivars more than inoculation with G. fasciculatum or G. agregatum. The effect on the plant dry weight was greater in plants grown in soil than in sand/vermiculite pots. Inoculation with sterilized and unsterilized spores of G. mosseae, either in soil pots or in sand/vermiculite tubes, did not increase the plant dry weight. Our results indicate that there was no close relationship between the level of root colonization and the effect on plant growth. The effects of accompanying microorganisms in the VA inoculum on VA mycorrhizal symbiosis are discussed.  相似文献   

9.
A glasshouse pot experiment was conducted to investigate the impact of inoculation of cucumber at the germination stage with Glomus etunicatum BEG168 on plant yield and incidence of Fusarium oxysporum f.sp. cucumerinum inoculated 28 days after the start of the experiment. Inoculation with the AM fungus decreased both disease incidence and disease index. Mycorrhizal inoculation also increased P concentrations in the cucumber seedlings. The mycorrhizal seedlings had higher concentrations of proline and polyphenol oxidase activity but lower malondialdehyde than non-mycorrhizal seedlings, indicating that AM inoculation may have protected membrane permeability and reduced the extent of the damage caused by F. oxysporum. The results indicate that the mycorrhizal fungus may influence plant secondary metabolites and increase resistance to wilt disease in cucumber seedlings and may therefore have some potential as a biological control agent.  相似文献   

10.
Abstract

A greenhouse experiment was conducted to determine the effectiveness of three vesicular‐arbuscular mycorrhizal (VAM) species in an Oxisol subjected to simulated erosion using Leucaena leucocephala as an indicator host. The extent of colonization of leucaena roots increased significantly due to VAM inoculation of the eroded and uneroded soils. The highest level of VAM colonization was observed when leucaena was grown in association with Glomus aggregatum. followed by G. mosseae and G. etunicatum. Increased infection associated with inoculation of the eroded soil did not result in enhanced mycorrhizal effectiveness. Inoculation of the uneroded soil, however, led to significant improvement in root colonization as well as in symbiotic effectiveness. Suppression in expression of mycorrhizal effectiveness in the eroded soil appears to be a result of nutrient deficiency. The results suggest the importance of restoring lost nutrients before differences in VAM species could be effectively exploited for a successful establishment of a mycorrhizal plants in eroded soils.  相似文献   

11.
不同施肥量条件下AM真菌对烟苗生长及营养状况的影响   总被引:1,自引:1,他引:0  
试验设置不同施肥量,于播种期分别接种根内球囊霉菌(Glomus intraradices Smith和Schenck,BEG193)和幼套球囊霉菌(Glomuse etunicatum Becker和Gerdemann,BEG168),探索了利用烤烟漂浮育苗技术生产菌根化烟苗和培育壮苗的可能性。结果表明:随着养分供应量的减少,AM真菌的侵染率提高,BEG193的侵染率高于BEG168。减施肥料总体上抑制烟苗生长,使烟苗生物量降低;但接种AM真菌显著促进烟苗生长,烟苗平均生物量比不接种的处理增加了74.38%(BEG168)和48.32%(BEG193)。接种BEG168使烟苗氮、磷、钾含量显著增加;接种BEG193主要是提高了烟苗含磷量。在施肥量减少75%辅以少量追肥的情况下,接种BEG168之后,烟苗生长状况和磷、钾含量超过或与常规施肥的非菌根苗相似。因此,在集约化烤烟漂浮育苗过程中,可采用接种AM真菌BEG168的方式培育壮苗,同时降低施肥量,减轻废弃营养液产生的环境污染。此外,接种AM真菌显著提高基质中的酸性磷酸酶活性,菌根苗基质中的磷酸酶活性随施肥量的降低而逐渐升高。因此,接种AM真菌有益于基质中有机磷的吸收利用,这可能是菌根烟苗含磷量提高的重要原因之一。  相似文献   

12.
Pot experiments were conducted in the greenhouse to determine the combined effects of lime, nitrogen and phosphorus and the relative importance of each of these nutrients in establishing nodulated and mycorrhizal Leucaena leucocephala (Lam.) de Wit Var. K8 in an oxisol subjected to simulated erosion. Leucaena was grown in the soil inoculated or not with the vesicular‐arbuscular mycorrhizal fungus Glomus aggregatum Schenck and Smith emend Koske, with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu, and B plus lime, N, and P (complete) or one of the latter three supplements.

The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness, as measured by pinnule P content increased when the eroded soil was amended with combinations of all the nutrients and inoculated with G. aggregatum. Similar trends were observed when symbiotic effectiveness was measured in terms of shoot P, Cu, and Zn status and dry matter yield. Nodule dry matter was also responsive to amendment of the soil with the complete nutrients and to vesicular‐arbuscular mycorrhizal inoculation. Phosphorus was found to be the most important nutrient limiting mycorrhizal effectiveness in the eroded soil, followed by N and lime. It is concluded that lost nutrients, particularly P, need to be replaced before legumes can be established successfully on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

13.
A greenhouse experiment was focused on the application of arbuscular mycorrhizal fungi (AMF) in effective crop production during reclamation of coal‐mine spoil banks. The aim of the study was to find out whether mycorrhizal inoculation improves growth of flax (Linum usitatissimum L.) and whether it can compensate for high doses of expensive organic amendment. Flax was planted in original spoil‐bank gray Miocene clay amended with organic matter used for spoil‐bank reclamation (mixture of composted urban waste and lignocellulose papermill waste). This amendment was applied in four descending doses equivalent to the application of 500, 200, 100, and 0 t ha–1. The plants received either a mixed inoculum of three AMF species (Glomus mosseae, G. claroideum, and G. intraradices) or were left uninoculated. Growth of flax was significantly increased by mycorrhizal inoculation in pure clay (by 60%) as well as in clay with all amendment doses (by 119% on average). Also, the addition of organic matter increased plant growth but, interestingly, the biomass production was comparable regardless the dose of amendment. Our results suggest that similar yields are attainable with only one fifth of the usual fertilization dose, which can significantly decrease costs related to the reclamation of spoil banks. If mycorrhizal inoculation is applied together with the optimized fertilization, growth of flax planted in spoil‐bank clay can be further improved.  相似文献   

14.
Abstract

Sorghum and leek plants were used as hosts in order to test the effectiveness and infectiveness of four mycorrhizal species on spore production, plant growth and phosphorus (P) uptake. When sorghum was used as a test plant, Glomus mosseae, Glomus etunicatum, and Glomus caledonium, respectively, gave the highest number of spores, while on leek, G. etunicatum, G. mosseae, and G. caledonium, respectively, resulted in higher spore production. Glomus intraradices produced the least amount of inoculum among the four species. Based on relative spore production and root infection, G. mosseae and G. etunicatum were determined to be the two best fungi as sources of inoculum for further use in the experiment. It is very important to know the minimum amount of inoculum in order to reach the maximum percentage of infection. Thus different amounts of inoculum were applied to determine optimum rates of inoculation. Sorghum and leek plants were infected with 0, 6, 12, 18, and 24 g G. mosseae and G. etunicatum of mycorrhizal inoculum per pot in a low P content and natural soil. As the inoculum rate increased, plant parameters and the percent of infection gradually increased with increasing rate to 18 g. Higher inoculum rates did not stimulate growth on infection percentage.  相似文献   

15.
Summary The symbiotic effectiveness of vesicular-arbuscular mycorrhizal (VAM) fungi present in widely differring tropical soils was evaluated in a greenhouse experiment. Small volumes of field soil, a standard inoculum (Glomus aggregatum) or both were introduced into a fumigated sand-soil medium amended with nutrients for optimum VAM activity. Leucaena leucocephala (Lam.) de Wit var. K8 was grown in the medium as an indicator plant. VAM effectiveness was monitored as a function of time by determining the P status of pinnules. The soils differed from each other with respect to the time their endophytes required for the expression of initial and maximum effectiveness and in the level of maximum effectiveness they exhibited. The effect of mycorrhizal inoculation, calculated as the ratio of the areas enclosed by the effectiveness curve of G. aggregatum to that enclosed by the effectiveness curves of test soils, was found to be a good indicator of the response of L. leucocephala to inoculation of soils with G. aggregatum Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3285  相似文献   

16.
Abstract. We studied the effect of inoculation with three arbuscular-mycorrhizal (AM) fungi ( Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae ([Nicol & Gerd.] Gerd. & Trappe) and the addition of composted sewage sludge on root nitrate reductase (NR, EC 1.6.6.1.) activity, mycorrhizal colonization, plant growth and nutrient uptake in Retama sphaerocarpa L. seedlings afforested in a semiarid, degraded Mediterranean soil under well-watered and non-watered conditions. Six months after planting, the mycorrhizal inoculation and the irrigation of plants had a strong effect on the growth parameters. The effect on plant growth was a negative interaction between plant irrigation and mycorrhizal inoculation and a positive interaction between plant irrigation and composted sewage sludge addition. The latter treatment had a significant, but moderate, effect on the growth but conferred no additional benefit when combined with mycorrhizal inoculation. Mycorrhizal inoculation, composted sewage sludge and irrigation had a significant effect on NR activity in roots and on foliar nutrients. The irrigation significantly increased the positive effect of composted sewage sludge on NR activity and the concentrations of foliar N and K. The effect of mycorrhizal inoculation on NR activity did not depend on the water regime. The effectiveness of mycorrhizal inoculation on the establishment and growth of R. sphaerocarpa seedlings in these Mediterranean conditions was independent of water regime. The addition of composted sewage sludge was only effective when soil water was freely available. The combination of mycorrhizal inoculation and composted sewage sludge addition had no synergistic effect on plant growth.  相似文献   

17.
Acacia mangium grown in aeroponic culture was co-inoculated with selected strains of Bradyrhizobium sp. and Glomus intraradices. A single-step technique using alginate as an embedding and sticking agent for an inoculum composed of arbuscular mycorrhiza (AM)-infected sheared roots was used to infect plants. This method resulted in the successful establishment of AM in 100% of the inoculated plants after 7 weeks. The results indicated that dual microbial inoculation with Glomus intraradices strain S-043 and Bradyrhizobium strain AUST 13C stimulated the growth of A. mangium in aeroponic culture. The effects of single and dual microbial inoculations were also evaluated at two levels of P in the nutrient medium. A concentration of 5 mg P kg–1 stimulated the development of AM without affecting plant development or establishment of Bradyrhizobium symbiosis. In contrast, saplings supplemented with a higher concentration of P (25 mg kg–1) alone or co-inoculated with Bradyrhizobium had lower AM frequencies.  相似文献   

18.
A greenhouse experiment was conducted to investigate the effects of a root-lesion nematode, Pratylenchus coffeae, two arbuscular mycorrhizal (AM) fungi, Acaulospora mellea and Glomus clarum, and timing of inoculation on the growth and nutrition of a nematode-susceptible Arabica coffee cultivar. The late AM inoculation (added simultaneously with nematodes) did not enhance coffee tolerance to P. coffeae. In the presence of P. coffeae, late-mycorrhizal plants were P deficient during the entire experiment and their foliar P concentration remained as low as that of non-mycorrhizal plants. After 7.5 months, nematodes decreased AM colonization of late-mycorrhizal plants by half and their biomass was only 20–30% that of the controls. In contrast, early AM inoculation (4 months before nematode inoculation) with either AM species improved the tolerance of coffee to P. coffeae. Root colonization by AM was not significantly reduced by P. coffeae. Despite higher densities of nematodes, root lesions were less numerous and more localized in early AM inoculated plants than in those of non-mycorrhizal plants. In the presence of P. coffeae, early AM-inoculated plants remained P sufficient and their biomass was still 75–80% that of their nematode-free controls. This study shows that in soils with low P levels, enhanced tolerance to P. coffeae seems limited to mycorrhizal coffee plants with well established AM symbiosis and improved P status. Received: 11 March 1997  相似文献   

19.
三种土壤上六种丛枝菌根真菌生长特征和接种效应   总被引:6,自引:3,他引:6  
以分离于华北、华中和华南3个生态区及法国引进的丛枝菌根真菌为试验菌株,采用三室根箱培养的方法,研究了它们在华北、华中和华南3种典型土壤褐土、棕壤和红壤上的菌根形成、接种效应、磷吸收贡献和根外菌物量情况。结果表明,6种菌株在上述指标上存在显著的种间或生态型差异,土壤与菌株间存在显著的交互作用。6种菌株在3种土壤上都能与玉米形成菌根,在褐土和棕壤上大多数菌株在分离地所在地区土壤类型上的菌根侵染率较高,说明其对该土壤条件的适应性较强;在红壤强酸性土壤条件抑制了菌根真菌的侵染。菌株BEG168、BEG167、BEG151、BEG221和BEG141在褐土上,BEG151和BEG221在棕壤上,BEG168和BEG150在红壤上显著提高了玉米的生物量。在褐土和棕壤上,除BEG150外,BEG168、BEG167、BEG151、BEG221和BEG141能显著促进宿主吸磷;而在红壤上,BEG168和BEG141显著促进了宿主吸磷。若以真菌的根外菌物量作为衡量AM真菌菌株土壤生态适应性的指标,BEG141和BEG167是生态适应性强的菌株,为广幅生态型菌株;菌株BEG168和BEG151次之,前者在棕壤上适应性高,后者在红壤上适应性高。BEG150和BEG221生态适应性较窄,仅适应红壤或褐土,为窄幅生态型菌株。Glomus.etunicatum的两个生态型BEG168和BEG221在土壤生态适应性上差异很大,前者在两种土壤上收集到菌物量,而后者只在褐土上收集到菌物量。土壤条件可以决定丛枝菌根真菌的生长状况和功能。  相似文献   

20.
[目的]研究接菌紫穗槐对矿区退化植被的恢复生态效应,以期为丛枝菌根真菌应用于西部干旱半干旱煤矿区生态重建提供理论基础和野外试验基础数据。[方法]以紫穗槐为宿主植物,在野外大田条件下研究接种丛枝菌根真菌和紫穗槐的共生状况,以及对煤矿开采沉陷区植物根际土壤的改良作用。[结果]4a的连续监测结果表明,接菌促进了紫穗槐的生长,接菌紫穗槐成活率比对照高30%以上;接菌紫穗槐菌根侵染率和菌丝密度显著高于对照;接种菌根提高了紫穗槐根际土壤有效磷含量且降低了pH值,取得较好的生态修复效应。[结论]在野外大田条件下,接种菌根真菌能够促进植物—菌根共生关系的形成,改善植物—菌根共生体的营养环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号