共查询到20条相似文献,搜索用时 0 毫秒
1.
番茄叶部病害严重影响了番茄的产量和质量,为实现在移动设备实时对番茄进行病害识别,提高番茄的产量,减少种植者的损失。本研究提出将轻量级网络模型MobileNet V2和迁移学习的方式相结合,对番茄早疫病、番茄细菌性斑疹病、番茄晚疫病、番茄叶霉病、番茄斑枯病、番茄红蜘蛛病、番茄褐斑病、番茄花叶病、番茄黄化曲叶病等9种叶部病害图像以及健康番茄叶片图像进行分类识别,首先将数据集按照9∶1的比例分为训练集和验证集,对于训练模型根据迁移学习的方式分别采用不冻结卷积层、冻结部分卷积层、全部冻结卷积层的方式获得3种模型,然后在模型最后加上2层全连接层并用Dropout层防止过拟合,接着通过Softmax层输出实现对番茄病害图像分类识别,最后利用验证集来统计模型的准确率和损失值。其中,冻结部分卷积层准确率最高,达到93.67%。另外,通过试验对比传统网络VGG16、ResNet50训练集和验证集的准确率、损失值及运行时间,其中迁移学习的MobileNet V2模型的准确率最高,运行时间最短。该研究提出的基于MobileNet V2和迁移学习的番茄病害识别研究方法识别效果较佳,速度较快,为在移动设备实时对... 相似文献
2.
【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构的识别性能,并用类激活图生成技术度量模型的可靠性。在番茄叶部病害数据集上验证方法的有效性。【结果】应用数据增广技术后,模型在简单背景样本上的识别准确率提高了1.0%,在复杂背景样本上提高了12.5%;聚焦损失使模型的准确率提高了0.1%;该模型的识别准确率为99.8%,对各类病害的召回率在97.3%以上;应用类激活图技术生成的显著性图可有效标识模型在识别过程中的重点关注区域。【结论】该方法能够有效解决病害图像样本非均衡问题,提高了病害识别模型的泛化性能,同时类激活图可以用于分析模型的可靠性,从而为番茄叶部病害防治提供参考。 相似文献
3.
为了提高番茄叶片病害识别的效果,提出改进卷积神经网络算法。首先Sobel算子获得水平方向、垂直方向、45°、135°对角方向的4个通道图像,四通道卷积神经网络采用不同大小的卷积核提取图像特征;接着双重注意力机制包括空间注意力、通道注意力,空间注意力包括局部注意力机制、全局注意力机制,局部注意力机制注意图像的局部特征,全局注意力机制注意图像的整体特征,空间注意力使用局部-全局交替注意力;通道注意力主要进行加强番茄叶片图像的有用特征抑制无用特征;然后通过K-means聚类方法划分出病害聚类区;最后给出了算法流程。试验仿真结果显示本研究算法对番茄叶片病害黄叶卷曲病、花叶病、蜘蛛螨病、七星斑病、叶霉菌病、早疫病识别准确率平均值分别为98.51%、97.92%、96.71%、94.12%、94.63%、94.22%,高于其他算法,同时消耗时间少于其他算法。 相似文献
4.
5.
基于深度可分离卷积神经网络的农作物病害识别方法 总被引:2,自引:0,他引:2
为了满足现代化、机械化农业生产的目标,降低模型的计算量,使农作物病害分类模型更适用于资源受限制的设备,提出了一种以深度可分离卷积为主的神经网络模型。利用深度可分离卷积和卷积相结合的方法取代标准卷积,计算量可降低至标准卷积的12%左右,并且大大减少网络模型的参数量。通过进一步减少通道数、改变网络输入图片大小的等方式,获得12种参数量和计算量不同的模型。结果显示,对含有复杂背景和光照不均匀的10类农作物的27种病害样本图片进行分类,该研究提出的模型准确率为98.26%,且参数量仅904 K。 相似文献
6.
基于迁移学习的番茄叶片病害图像分类 总被引:4,自引:1,他引:4
针对卷积神经网络对番茄病害识别需训练参数较多,训练非常耗时的问题,将迁移学习应用于AlexNet卷积神经网络,对病害叶片和健康叶片共10种类别的番茄叶片进行分类研究。使用14 529张番茄叶片病害图像,随机选择70%作为训练集,30%作为验证集,对AlexNet卷积神经网络模型结构进行迁移,利用在Imagenet图像数据集上训练成熟的AlexNet模型和其参数对番茄叶片病害识别。在训练过程中,固定低层网络参数不变,微调高层网络参数,将番茄病害图像输入到网络中训练网络高层参数,用训练好的模型对10种类别的番茄叶片分类,并进行了20组试验。结果表明:该算法在训练迭代474次时使网络模型很好的收敛,网络对验证集的测试平均准确率达到95.62%,与从零开始训练的AlexNet卷积神经网络相比,本研究算法缩短了训练时间,平均准确率提高了5.6%。采用迁移学习所建立的病害分类模型能够对10种类别的番茄叶片病害快速准确地分类。 相似文献
7.
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精... 相似文献
8.
9.
茶树是重要的经济作物,叶部病害的发生直接影响其产量和质量.针对胶囊网络在茶树叶部病害图像识别中识别率低和参数量大的问题,提出了一种基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别算法.首先,由于尚无茶树叶部病害图像标准数据集,构建了茶树叶部病害图像数据集.其次,在胶囊网络中引入深度可分离卷积,并在深度可分离... 相似文献
10.
11.
【目的】农作物生长过程中,作物产量会受到各种病害影响,实现自动精准地识别农作物病害以及病害程度的测定是农作物病害防治的关键。【方法】文章设计了一种基于卷积神经网络的农作物病害的识别方法并建立了农作物病害识别模型,模型利用10种作物中常见的59种病害类型的叶片图像数据集进行训练,并对模型的训练过程和训练结果进行评估。【结果】(1)农作物病害识别模型对59种病害类型的总识别精度达到0.83,部分类别的识别率高于0.9;(2)当训练的迭代次数增加到50轮以上时,农作物病害识别模型的性能不再提升,此时数据集图像的数量对模型性能的影响较大。【结论】实验证明,利用卷积神经网络进行农作物病害识别具有较高的可行性和准确性,为农作物病害的防治打下基础。 相似文献
12.
为了解决番茄人工分级精度低、工作效率低等问题,基于卷积神经网络提出1种用于番茄品质分级的网络结构,并给予优化改进。设计的卷积神经网络由7个权重层(6个卷积层和1个全连接层)和4个池化层(3个最大池化层和1个全局平均池化层)构成,利用批量归一化和压缩激励模块(SE模块)进行网络结构优化。采用自采集的番茄图像数据集,通过数据增广将原1 455张图片增广至8 730张图片并进行训练和测试,用精确度、召回率、F1值(精确度和召回率的调和平均数)评估模型的各分类差异。优化后的网络模型测试精度为96.57%,比未优化的网络模型测试精度提高了2.58个百分点。并且与传统经典网络AlexNet、MobileNet-V2、NasNet-Mobile、ShuffleNet 4种模型相比,具有收敛速度更快的优势,训练时间减少了22%~96%,测试精度提高了0.18~1.89个百分点,单张照片测试时间降低了37%~83%,计算统一设备架构(CUDA)内存占用比例也得到了一定程度的降低。优化后的网络训练过程更加稳定,模型注意力更多地集中在整个番茄上,在一定程度上降低了背景干扰,提升了算法的... 相似文献
13.
14.
为提高草莓病害图像的分类准确性,提出一种基于通道域增强的深度超参数化金字塔卷积残差网络(CEM-DOPConv-ResNet18)。首先,针对草莓病害的多尺度特点,基于金字塔卷积与深度超参数化卷积提出深度超参数化金字塔卷积(DOPConv),在提取多尺度病害特征的同时,缓解参数量增加导致的收敛干扰;其次,提出基于双重池化的通道增强模块,用以提高模型的特征选择能力,增强有用尺度下的特征;最后,将上述方法与ResNet18结合,将原本的3×3卷积替换为DOPConv,同时在残差块中加入通道增强模块,构建出草莓病害分类网络。为验证模型识别性能与模块有效性,在草莓病害图像数据集上进行对比试验和消融试验。对比试验结果表明,与原有ResNet18模型相比,CEM-DOPConv-ResNet18的准确率达97.867%,提高3.045百分点,同时内存占用量下降16.6%;消融试验结果表明,相较于原始金字塔卷积,DOPConv可以优化模型收敛,对通道增强模块具有更高的兼容度。该模型提高了草莓病害的分类准确率,降低了网络复杂度,为病害的精准识别提供了一种有效解决模型。 相似文献
15.
基于卷积神经网络和小样本的茶树病害图像识别 总被引:2,自引:0,他引:2
以常见且特征相似的茶轮斑病、炭疽病和云纹叶枯病为对象,研究在小样本情况下利用卷积神经网络进行病害图像识别问题。运用7种模式的预处理方法对茶树叶部病害图像样本进行处理,并采用Alex Net经典网络模型进行学习实验,比较、分析其训练及识别效果。结果显示,模式7训练模型精度为93. 3%,平均测试准确率为90%,且对茶轮斑病、炭疽病和云纹叶枯病的正确区分率分别为85%、90%和85%,在预测值和真实值一致性方面优于其他预处理方法。在小样本情况下,该预处理方法可有效区分、识别3种易混病害,且识别精度高,性能好。 相似文献
16.
基于注意力残差机制的细粒度番茄病害识别 总被引:2,自引:0,他引:2
【目的】解决温室环境下细粒度番茄病害识别方法不足问题。【方法】以早、晚期5种番茄病害叶片为研究对象,提出一种基于注意力与残差思想相结合的新型卷积神经网络模型ARNet。通过引入多层注意力模块,层次化抽取病害分类信息,解决早期病害部位分散、特征难以提取难题;为避免网络训练出现退化现象,构建残差模块有效融合高低阶特征,同时引入数据扩充技术以防止模型过拟合。【结果】对44 295张早、晚期病害叶片数据集进行模型训练与测试的结果表明,与VGG16等现有模型相比,ARNet具有更好的分类表现,其平均识别准确率达到88.2%,显著高于其他模型。ARNet对早期病害识别准确率明显优于晚期病害,验证了注意力机制在提取细微区域特征上的有效性,且在训练过程中未发生过度抖动的状况。【结论】本文提出的模型具有较强鲁棒性和较高稳定性,在实际应用中可为细粒度番茄病害智能诊断提供参考。 相似文献
17.
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。 相似文献
18.
目前,基于迁移学习诊断农作物病害已经成为一种趋势,然而大多数研究使用的模型参数众多,占用了大量设备空间并且推理演算耗时较长,导致对存储和计算资源有严格限制的设备无法利用深度神经网络的优势.为此,本研究以PlantVillage数据集中的番茄病害样本为研究对象,基于条件卷积及通道注意力机制,提出1种新颖的轻量级模型,同时... 相似文献
19.
作物病害分类识别模型一直受被研究对象自身特性影响,为验证智能分类器在番茄常见病害中的识别效果,选择不同群智能分类器进行分类识别。采用主成分分析(principal component analysis,简称PCA)法对样本集的31个数据进行降维,筛选7个贡献率较高的主成分作为PCA-支持向量机(support vector machine,简称SVM)模型的输入;遗传算法(genetic algorithm,简称GA)具有全局寻优特点,正交变换可使变异率、交叉率、种群规模等参数之间快速最优化,构建GA-SVM智能分类器提高识别率;由于GA-SVM分类器增加了交叉变异计算,参数确定时间相对较长,而粒子群优化(particle swarm optimization,简称PSO)算法不存在交叉变异因子计算过程,因此选择PSO-SVM群智能分类器,把种群中具有最大适应度函数值的惩罚系数(r)和核函数参数(σ2)作为支持向量机模型的最优参数,试验证明,PCA-SVM模型对3种病害类型中的分类效果总体较好。 相似文献